Electronic Supplementary Information

Catalytic activity atlas of ternary Co-Fe-V metal oxides for oxygen evolution reaction

Junsheng Chen^{*a*}, Hao Li^{*b*}, Zengxia Pei^{*a*}, Qianwei Huang^{*c*}, Ziwen Yuan^{*a*}, Chaojun Wang^{*a*}, Xiaozhou Liao^{*c*}, Graeme Henkelman^{*b*}, Yuan Chen^{*a*}, * and Li Wei^{*a*}, *

- ^{a.} School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- ^{b.} Department of Chemistry and the Oden Institute for Computational and Engineering Sciences, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas, United States, 78712
- ^{c.} School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia

Authors emails: <u>yuan.chen@sydney.edu.au</u> (Y. C.) and <u>l.wei@sydney.edu.au</u> (L.W)

Sample	Design	ed comp	osition		Precursor volume, mL						
No.	Со	Fe	V	CoCl2 (50 mM)	FeCl2 (50 mM)	VOSO4 (50 mM)	H ₂ O	K ₃ [Fe(CN) ₆] (20 mM)	K3[C0(CN)6] (20 mM)		
1	2	6	2	10	10	10	20	50	0		
2	1	6	3	5	10	15	20	50	0		
3	3.33	5	1.67	16.65	5	8.35	20	50	0		
4	1.67	5	3.33	8.35	5	16.65	20	50	0		
5	1	5	4	5	5	20	20	50	0		
6	4.5	4	1.5	22.5	0	7.5	20	50	0		
7	4	4	2	20	0	10	20	50	0		
8	3	4	3	15	0	15	20	50	0		
9	2	4	4	10	0	20	20	50	0		
10	1.5	4	4.5	7.5	0	22.5	20	50	0		
11	1	4	5	5	0	25	20	50	0		
12	5	3	2	20	0	10	20	37.5	12.5		
13	4.67	3	2.33	18.35	0	11.65	20	37.5	12.5		
14	3.5	3	3.5	12.5	0	17.5	20	37.5	12.5		
15	6	2	2	10	10	10	20	0	50		
16	5.33	2	2.67	16.65	0	13.35	20	25	25		
17	2.67	2	5.33	3.35	0	26.65	20	25	25		
18	0	10	0	0	30	0	20	50	0		
19	0	8	2	0	20	10	20	50	0		
20	0	7	3	0	15	15	20	50	0		
21	0	5	5	0	5	25	20	50	0		
22	0	4	6	0	0	30	20	50	0		
23	2	8	0	10	20	0	20	50	0		
24	4	6	0	0	30	0	20	0	50		
25	6	4	0	30	0	0	20	50	0		
26	8	2	0	30	0	0	20	25	25		
27	10	0	0	30	0	0	20	0	50		
28	8	0	2	20	0	10	20	0	50		
29	5	0	5	5	0	25	20	0	50		
30	4	0	6	0	0	30	20	0	50		

Table S1. Amount of Co, Fe and V precursor used for synthesising different CoFeV PBA precursors.

Fig. S1 XRD patterns of different PBA nanoparticles synthesized in this study.

Fig. S2 XRD patterns of metal oxides synthesized in this study.

Fig. S3 TGA and thermal flow profile of Co₃Fe₄V₃ PBA nanoparticles.

Fig. S4 XRD patterns of $Co_3Fe_4V_3O_x$ nanoparticles obtained after thermally decomposing PBA nanoparticles in the air at 350 °C. Standard lines of a spinel $CoFe_2O_4$ (PDF#03-0864) is displayed for comparison.

Fig. S5 SEM images of various PBA nanoparticles and their corresponding metal oxide nanoparticles. (a) and (f) Co_6V_4 , (b) and (g) Co, (c) and (h) Fe_7V_3 , (d) and (i) Co_6Fe_4 , (e) and (j) Fe.

Table S2.	Particle	size of	various	PBA	precursors	and their	r derived	metal	oxide	particles	determi	ined
by SEM												

	Diameter of PBA precursor, nm	Diameter of metal oxide, nm
Co ₃ Fe ₄ V ₃	53.91 ± 4.35	49.57 ± 7.26
Co_6V_4	65.78 ± 5.43	60.05 ± 9.19
Co	96.53 ± 10.93	87.20 ± 7.92
Fe_7V_3	69.38 ± 6.92	53.20 ± 6.09
Co ₆ Fe ₄	51.50 ± 4.87	49.43 ± 5.40
Fe	62.16 ± 9.47	60.38 ± 6.48

Fig. S6 TEM and HAADF-STEM EDX elemental mappings of Co₃Fe₄V₃ PBA nanoparticles.

Table S3. Elemental compositions (in molar ratio) of Co-Fe-V metal oxides determined by different methods.

	Designed			EDX			ICP-AES			XPS		
	Co	Fe	V	Со	Fe	V	Со	Fe	V	Со	Fe	V
Co ₃ Fe ₄ V ₃ O _x	3	4	3	2.90	3.99	3.11	2.97	4.09	3.04	2.85	3.96	3.19
Co ₅ V ₅ O _x	5	0	5	5.03	0.00	4.97	5.11	0.00	4.89	5.16	0.00	4.84
Co ₆ Fe ₄ O _x	6	4	0	5.93	4.07	0.00	5.88	4.12	0.00	6.06	3.95	0.00
Fe ₇ V ₃ O _x	0	7	3	0.00	2.89	7.11	0.00	7.07	2.93	0.00	6.95	3.05

Fig. S7 XPS survey spectra of (a) $Co_3Fe_4V_3O_x$, (b) $Co_5V_5O_x$, (c) $Co_6Fe_4O_x$, (d) $Fe_7V_3O_x$, (e) CoO_x , and (f) FeO_x samples.

Sample	Design	ed comp	osition	Expe	Experimental composition				Tafel
No.	(n	nolar rat	io)	-	(molar	ratio) a	- 1	η_{10}, mV	slope, mV
	Co	Fe	V	Co	Fe	V	O ^b		dec ⁻¹
1	2	6	2	1.94	5.95	2.11	14.71	396	70
2	1	6	3	0.94	6.08	2.98	14.91	419	80
3	3.33	5	1.67	3.09	4.97	1.94	14.23	335	68
4	1.67	5	3.33	1.50	4.97	3.53	15.01	398	67
5	1	5	4	0.94	5.04	4.02	15.13	412	67
6	4.5	4	1.5	4.57	4.08	1.36	13.78	334	74
7	4	4	2	3.78	3.96	2.26	13.60	343	60
8	3	4	3	2.85	3.96	3.19	14.43	249	41
9	2	4	4	1.87	4.07	4.06	15.38	279	63
10	1.5	4	4.5	1.60	4.11	4.29	16.01	292	66
11	1	4	5	0.90	3.95	5.15	16.56	385	74
12	5	3	2	4.89	3.03	2.09	14.13	345	55
13	4.67	3	2.33	4.54	3.07	2.39	13.79	296	47
14	3.5	3	3.5	3.22	2.95	3.82	14.73	287	51
15	6	2	2	5.90	1.93	2.17	14.31	342	62
16	5.33	2	2.67	5.46	1.96	2.58	14.92	313	59
17	2.67	2	5.33	2.82	1.86	5.32	16.31	335	72
18	0	10	0	0.00	10	0.00	14.59	656	153
19	0	8	2	0.00	8.15	1.85	14.74	567	112
20	0	7	3	0.00	6.95	3.05	14.58	519	78
21	0	5	5	0.00	5.10	4.90	16.16	531	87
22	0	4	6	0.00	4.11	5.89	15.99	589	105
23	2	8	0	2.06	7.94	0.00	15.19	458	97
24	4	6	0	4.09	5.91	0.00	14.69	412	71
25	6	4	0	6.06	3.95	0.00	15.13	345	63
26	8	2	0	8.11	1.89	0.00	14.25	372	70
27	10	0	0	10	0.00	0.00	14.59	386	77
28	8	0	2	7.83	0.00	2.17	15.41	369	65
29	5	0	5	5.16	0.00	4.84	15.23	319	56
30	4	0	6	3.87	0.00	6.13	15.85	359	78

Table S4. OER performance of Co-Fe-V metal oxide samples tested in this study.

a. Determined by ICP-AES measurements.

b. Determined from XPS survey scan. This value is also the x value in different $Co_aFe_bV_cO_x$ samples.

Sample	Substrate	Electrolyte	η10, mV	Tafel slope, mV dec ⁻¹	Ref.
Co ₃ Fe ₄ V ₃ O _x	GCE	1 M KOH	249	41	This work
CoV _{1.5} Fe _{0.5} O ₄	GCE	1 M KOH	300	38	ACS Catal., 2018 , 8, 1259
V-Co-Fe- 343(souce)	GCE	1 M KOH	307	36	J. Mater. Chem. A, 2015 , 3, 17763
a-CoVO _x	GCE	1M KOH	347	51	ACS Catal., 2018, 8, 644
CoO _x + Fe ³⁺	GCE	1M KOH	309	27.6	ACS Catal., 2017, 8, 807
Fe _{0.5} V _{0.5} OOH	GCE	1M KOH	390	36.7	Angew. Chem. Int. Ed., 2017 , 56, 3289
VOOH-3Fe	GCE	1M KOH	195	55	Small, 2019, 15, 1904688
Co ₃ O ₄ /Co-Fe Oxide	GCE	1M KOH	297	61	<i>Adv. Mater.</i> 2018 , <i>30</i> , 1801211
α -Co ₄ Fe(OH) _x	GCE	1M KOH	295	52	J. Mater. Chem. A, 2017 , 5, 1078
Co/Fe 15	GCE	0.1M KOH	390	61	J. Mater. Chem. A, 2017 , 5, 6849
CoFe35 LDH	GCE	0.1M KOH	350	49	ChemSusChem, 2017 , 10, 156
Fe1Co1-ONS	GCE	1M KOH	308	36.8	<i>Adv. Mater.</i> , 2017 , 29, 1606793
CoFe2O4	GCE	1M KOH	266	53	<i>Appl. Catal. B</i> , 2019 , 245, 1
WCoFex-CNF	Ni Foam	1M KOH	254	44.8	Small, 2019, 15, 1901940
CoFe-H	Graphite	1M KOH	280	28	<i>Adv. Funct. Mater.</i> , 2017 , 27, 1603904
Co-Fe	Carbon paper	1M KOH	330	37	<i>Electrochimi Acta</i> , 2018 , 260, 872
CoFe	Carbon paper	1M KOH	283	51	Nano Energy, 2017 , 53, 576
CoFeV LDH/NF	Ni Foam	1 M KOH	242	57	ACS Sustain. Chem. Eng., 2019 , 7 16828
Co _{0.8} V _{0.2} OOH	Ni foam	1M KOH	190	39.6	J. Mater. Chem. A, 2019 , 7 21911
CoV-UAH	Au foam	1M KOH	215	-	<i>Energy Environ. Sci.,</i> 2018 , 11 1736
Fe-Co ₃ O ₄ H-NSs/NF	Ni foam	1M KOH	204	38	Nano Energy, 2018 , 54, 238
CoFe/NF	Ni foam	1M KOH	220	40	Small, 2018, 14, 1702568
FCCH/NF	Ni foam	1M KOH	228		<i>Adv. Energy Mater.</i> 2018 , 8, 1800175
CoFe PBA-2h	Ni foam	1M KOH	274	53	<i>Adv. Energy Mater.</i> 2018 , 8, 1800085

Table S5. Performance comparison of recently reported OER electrocatalysts based on Co, Fe and V oxides.

Fig. S8 OER LSV and Tafel plots of tested $Co_aFe_bV_cO_x$ samples. (a) & (b) Co-Fe samples; (c) & (d) Co-V samples; (e) & (f) Fe-V samples; (g) & (h) $Co_aFe_2V_cO_x$ and $Co_aFe_3V_cO_x$ samples; (i) & (j) $Co_aFe_4V_cO_x$ samples (k) & (l) $Co_aFe_5V_cO_x$ and $Co_aFe_6V_cO_x$ samples.

Fig. S9 LSV curves of $Co_3Fe_4V_3O_x$ in comparison to (a) IrO_2 and RuO_2 benchmarks and (b) phase-segregated $Co_3Fe_4V_3O_x$ -C sample.

Fig. S10 Full ESI Nyquist plots of different samples and the equivalent circuit.

Fig. S11 CV curves of (a) $Co_3Fe_4V_3O_x$, (b) $Co_5V_5O_x$, (c) $Co_4Fe_6O_x$, (d) $Fe_7V_3O_x$, (e) CoO_x , and (f) FeO_x samples collected at different scan rates.

Fig. S12 (a) Δj (0.94 V *vs.* RHE) plotted against scan rate and the calculated C_{dl} and (b) calculated ECSA of different Co-Fe-V metal oxide samples.

Fig. S13 OER performance atlas of ternary $Co_aFe_bV_cO_x$ based on the overpotential required to reach a *j_{ECSA}* of 1 mA cm⁻². Sample compositions were determined by ICP-AES and makred by black dots.

Fig. S14 A TEM image of $Co_3Fe_4V_3O_x$ after the 72-hour OER stability test (left) and the corresponding EDX elemental mappings of Co, Fe, V, and O (right).

Fig. S15 (a) CV curves obtained at different scan rates and (b) $\Delta j@0.94V$ plotted against scan rates of the Co₃Fe₄V₃O_x after the OER stability test.

Catalyst	Onset overpotential (V)					
Catalyst	Theoretical values	Experimental values ($\eta_{\text{ECSA-0.25}}$)				
Co-CoFeV (near Fe)	0.63	0.10				
Co-CoFeV (near V)	1.12	0.19				
Co-CoV	0.77	0.28				
Co-CoFe	0.87	0.29				
Со	0.94	0.35				

Table S6. Theoretical and experimental onset potential of different samples.

Fig. S16 ECSA normalized LSV curves of different samples.

	C0 ²⁺	Co ³⁺		Fe ²⁺	Fe ³⁺		V^{3+}	V ⁴⁺	V^{5+}	
Position, eV	781.9	779.9		710.2	711.2		515.6	516.7	517.8	
Catalyst	Co ²⁺	Co ³⁺	Co average valence	Fe ²⁺	Fe ³⁺	Fe average valence	V^{3+}	V ⁴⁺	V^{5+}	V average valence
Co ₃ Fe ₄ V ₃ O _x	73.9	26.1	2.261	18.7	81.3	2.813	13.2	62.3	24.5	4.114
$Co_5Fe_4V_1O_x$	47.6	52.4	2.524	22.0	78.0	2.780	4.7	73.2	22.1	4.174
Co ₁ Fe ₄ V ₅ O _x	77.7	22.3	2.223	14.1	85.9	2.859	10.4	84.7	5.0	3.946
Co ₆ Fe ₄ O _x	48.6	51.4	2.514	24.2	75.8	2.758	-	-	-	-
Co ₅ V ₅ O _x	89.6	10.4	2.104	-	-	-	4.1	69.4	26.5	4.224
Fe ₇ V ₃ O _x	-	-	-	3.4	96.6	2.966	15.4	76.5	8.0	3.926
CoO _x	41.3	58.7	2.587	-	-	-	-	-	-	-
FeO _x	-	-	-	25.8	74.2	2.742	-	-	-	-

Table S7. Metal valence contents (at%) in different $Co_aFe_bV_cO_x$ determined from their high-resolution XPS spectra.

Fig. S17 O1s XPS spectra of different samples.

Fig. S18 XPS spectra of (a) Co, (b) Fe, (c) V and (d) O in $Co_1Fe_4V_5O_x$ (top panels) and $Co_5Fe_4V_1O_x$ (bottom panels) samples.

Fig. S19 The relationship between average valence states of different metals and the abundance of Co in various samples with Fe content fixed at 40 at%.

Fig. S20 High-resolution XPS spectra of (a) Co, (b) Fe, and (c) V in $Co_3Fe_4V_3O_x$ after the OER stability test.

Table S8. The valence state of metal species in $Co_3Fe_4V_3O_x$ after the OER stability test determined from XPS analysis (in at%).

Conditions	Co ²⁺	Co ³⁺	Fe ²⁺	Fe ³⁺	V ³⁺	V ⁴⁺	V ⁵⁺
Before OER test	73.9	26.1	18.7	81.3	13.2	62.3	24.5
After OER test	29.0	71.0	14.6	85.4	2.3	20.1	77.5