Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Controlling visible-light driven photocatalytic activity of alloyed

ZnSe-AgInSe₂ quantum dots for hydrogen production

<u>Ping-Yen Hsieh</u>,^a Tatsuya Kameyama,^b Takayuki Takiyama,^b Ko Masuoka,^b Takahisa Yamamoto,^b Yung-Jung Hsu^{*a,c} and Tsukasa Torimoto^{*b}

^aDepartment of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

^bGraduated School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan

°Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan

*E-mail: <u>yhsu@cc.nctu.edu.tw</u>

*E-mail: torimoto@chembio.nagoya-u.ac.jp

									- 2	
	Ligand	A_1 (%)	τ_1 (ns)	$A_2(\%)$	τ_2 (ns)	A ₃ (%)	τ_3 (ns)	<eq: <\tap{eq: style="background-color: blue; color: blue; blue; blue; color: blue; b</th> <th>X^2</th> <th>$k_{ct}(10^{6} \text{ s}^{-1})$</th>	X^2	$k_{ct}(10^{6} \text{ s}^{-1})$
<i>x</i> =0.1	OLA	2.5	194	14.4	43.9	83.1	3.57	87.4	1.03	0.858
	MPA	2.6	184	18.3	36.6	79.1	3.21	81.3	1.08	
x=0.3	OLA	11.4	259	21.0	53.7	67.6	4.04	189	1.03	3.18
	MPA	5.8	192	17.7	33.2	76.5	3.88	118	1.09	
<i>x</i> =0.5	OLA	9.4	446	25.6	92.4	65.0	4.56	305	1.08	3.30
	MPA	5.4	234	15.0	32.6	79.6	4.02	152	1.01	
<i>x</i> =0.7	OLA	8.2	262	26.2	62.9	65.6	4.44	163	1.08	0.858
	MPA	4.5	249	16.9	42.7	78.6	4.09	143	1.02	
x=0.9	OLA	8.8	158	34.4	38.0	56.8	4.60	91.0	1.14	9.97
	MPA	0.8	186	16.4	23.2	82.8	3.33	47.7	1.03	

Table S1. Fitting results of TRPL data for OLA-ZAISe(x, 0.5) and MPA-ZAISe(x, 0.5) with various x values.

Fig. S1 FTIR spectra of ZAISe(0.5, 0.5) QDs modified with OLA (black line) and MPA (red line).

Fig. S2 Chemical compositions of OLA-ZAISe(x, 0.5) QDs with various x values. Dashed lines represent theoretical values estimated from the ratios of precursor concentrations.

Fig. S3 Relationship between PL QY and the peak wavelength of PL spectra for OLA-ZAISe(x, 0.5) and MPA-ZAISe(x, 0.5) with various x values.

Fig. S4 Tauc plots for calculating the bandgap of OLA-ZAISe(x, 0.5) with different x values.

Fig. S5 PYSA spectra of OLA-ZAISe(x, 0.5) with varied x values. The number in each panel is the onset photon energy, that is, the ionization energy determined.

•											
í.		Hexagonal	ZnSe	л.							
(a.		Cubic Z	inSe	1							
nsity	MPA-ZAISe(0.5, 0.5), after photocatalysis										
Dimensional and the second sec											
KR											
	30) 4 Thoto	0 (dogra	50 50	60						
z meta (degree)											
MPA-ZAISe(0.5,	, 0.5)	Zn	Ag	In	Se	x					
before photocata	24.03	10.13	16.02	49.82	0.52						
after photocata	lysis	24.85	10.88	15.85	48.42	0.52					

Fig. S6 XRD patterns and EDX data for MPA-ZAISe(0.5, 0.5) before and after the photocatalytic reaction.

Fig. S7 Chemical compositions of MPA-ZAISe(0.5, y) with various y values. Dashed lines represent theoretical values estimated from the ratios of precursor concentrations.

Fig. S9 PYSA spectra and Tauc plots of ZAISe(0.5, y) with y=0.3(a) and 0.7(b).

Fig. S10 PL spectra of OLA-ZAISe(0.5, y) with varied y values. Corresponding PL QYs are shown in the panel.