Supporting Information

Simple Route to Fiber-Shaped Heterojunctioned Nanocomposites for Knittable High-Performance Supercapacitors

Xin Zhang,^a Xing Chen,^a Tian Bai,^a Jiaqi Chai,^a Xin Zhao,^a Meidan Ye,^{*a,b} Zhiqun Lin,^{*b} and Xiangyang Liu,^{*a, c}

a. Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for

Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen

361005, China

b. School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA
30332, USA

c. Department of Physics, Faculty of Science, National University of Singapore, Singapore

*Corresponding authors: <u>mdye@xmu.edu.cn</u>, <u>zhiqun.lin@mse.gatech.edu</u>, and <u>liuxy@xmu.edu.cn</u>

Fig. S1 SEM images of (a) pure stainless steel microwire ($D = 30 \ \mu$ m), and (b-d) the NiCo₂S₄@MgS nanocomposites synthesized via the first-step hydrothermal reaction in the solution containing NiCl₂·6H₂O, CoCl₂·6H₂O, MgCl₂·6H₂O, urea and NH₄F at 120 °C for different times: (b) 12 h, (c) 16 h and (d) 20 h, followed by the second-step hydrothermal reaction in the Na₂S solution at 80 °C for 6 h. (e) SEM image of the NiCo₂S₄ nanosheets grown on the stainless steel microwire prepared via the first-step hydrothermal reaction in the solution containing only NiCl₂·6H₂O, CoCl₂·6H₂O, urea and NH₄F (i.e., no MgCl₂·6H₂O) at 120 °C for 6 h. (f) SEM image of the MgS film grown on the stainless steel wire produced via the first-step hydrothermal reaction at 80 °C for 6 h. (f) SEM image of the MgS film grown on the stainless steel wire produced via the first-step hydrothermal reaction in the Na₂S solution at 80 °C for 6 h. (f) SEM image of the MgS film grown on the stainless steel wire produced via the first-step hydrothermal reaction in the Na₂S solution at 80 °C for 24 h, followed by the second-step hydrothermal reaction in the Na₂S solution at 80 °C for 6 h. (f) SEM image of the MgS film grown on the stainless steel wire produced via the first-step hydrothermal reaction in the solution containing solely MgCl₂·6H₂O, urea and NH₄F (i.e., no NiCl₂·6H₂O, CoCl₂·6H₂O) at 120 °C for 24 h, followed by the second-step hydrothermal reaction in the solution containing solely MgCl₂·6H₂O, urea and NH₄F (i.e., no NiCl₂·6H₂O, CoCl₂·6H₂O) at 120 °C for 24 h, followed by the second-step hydrothermal reaction in the Na₂S solution at 80 °C for 6 h.

Fig. S2 EDS mapping of the (a) $NiCo_2S_4$ nanosheets and (b) MgS nanowires within the $NiCo_2S_4@MgS$ nanocomposite.

Fig. S3 (a) XRD pattern of the $NiCo_2S_4@MgS$ nanocomposites. High-resolution XPS spectra for the (b) Ni 2p, (c) Co 2p, (d) Mg 1s, (e) Mg 2p and (f) S 2p in the $NiCo_2S_4@MgS$ nanocomposites.

Fig. S4 (a) Galvanostatic charge-discharge (GCD) of the NiCo₂S₄@MgS electrode at high current densities. (b) SEM image of the NiCo₂S₄@MgS electrode after the charge-discharge 10000-cycling test.

Fig. S5 (a) GCD and (b) CV curves of the MgS film on the stainless steel microwire prepared via the first-step hydrothermal reaction in the solution only containing MgCl₂· $6H_2O$, urea and NH₄F at 120 °C for 24 h, followed by the second-step hydrothermal reaction in the Na₂S solution at 80 °C for 6 h.

Fig. S6 (a) SEM image of the FeOOH electrode prepared at a deposition time of 20 min. (b) CV curves at a scan rate of 50 mV s⁻¹ of the FeOOH electrodes grown on stainless steel microhairs via the electrodeposition method at different deposition times. (c) CV curves at different scan rates of the FeOOH electrode prepared for a deposition time of 20 min. (d) CV curves at a scan rate of 50 mV s⁻¹ of the NiCo₂S₄@MgS and FeOOH electrodes prepared for a deposition time of 20 min.

In order to assemble fiber-shaped asymmetric supercapacitors containing the $NiCo_2S_4@MgS$ nanocomposites as the positive electrode, the FeOOH negative electrode (Figure S5a) was grown on stainless steel microwire by electrodeposition. Figure S5b shows the CV curves of the FeOOH negative electrode prepared at different deposition times. It can be seen that the sample obtained at the deposition time of 20 min has the best CV performance and its CV curves tested at different scan rate are shown in Figure S5c. The

reactions of the FeOOH electrode are as follows:^[1]

$$NO^{3-} + 7H_2O + 8e^- = NH_4^+ + 10OH^-$$

 $Fe^{3+} + 3OH^- = Fe(OH)_3$
 $Fe(OH)_3 = FeOOH + H_2O$

The CV curves of the FeOOH and NiCo₂S₄@MgS electrodes are shown in **Figure S5d**. The area of the CV curve suggests the quantity of electric charge (Q) of the electrodes, and the area ratio of NiCo₂S₄@MgS to FeOOH is 1:0.8, indicating that the Q ratio is 1:0.8.

Samples (positive electrode//negative electrode)	E (mWh	<i>P</i> (W cm ⁻³)	Refs.
	cm ⁻³)		
NiCo ₂ S ₄ @MgS network-like nanostructures on	107.5	1.7	This work
stainless steel microhairs//FeOOH nanosheets on			
stainless steel microhairs			
NiCo ₂ O ₄ nanosheets on Ni wires//NiCo ₂ O ₄	1.44	17	25
nanosheets on Ni wires			
carbon fiber thread@PANI//functionalized carbon	2	10.22	45
fiber thread			
graphene nanoribbon fiber//MnO2 on graphene	5.7	0.08	46
nanoribbon fiber			
CoNiO ₂ nanowires on carbon fiber//active carbon	0.50	0.213	47
on carbon fiber			
porous Mn-Ni-Co-S nanotubes on carbon nanotube	52	0.582	48
fiber//VN nanowires on carbon nanotube fiber			
Fe ₂ O ₃ on carbon fiber//MnO ₂ on carbon	0.43	0.02	49
nanotube-web paper			
MnO ₂ on carbon fiber//FeOOH/PPy on carbon	3.7	0.19	50
fiber			
Mo-Ni-Co-O nanowire on carbon nanotube	22.2	0.21	51

Table S1. Comparison of the volumetric energy density (E) and power density (P) betweenthe FASCs in the present study and the reported values in literatures.

fiber//VN nanowires on carbon nanotube fiber			
Zn-Ni-Co-O nanowires on carbon nanotube	33.66	0.40	52
fiber//VN@C on carbon nanotube strip			
PANI@CNTs on carbon fiber//MnO2@CNTs on	8.3	0.1	53
carbon fiber			