Supplementary Information

Phase Transitions, Screening and Dielectric Response of CsPbBr₃

Šarūnas Svirskas^{1*}, Sergejus Balčiūnas¹, Mantas Šimėnas¹, Gediminas Usevičius¹, Martynas

Kinka¹, Martynas Velička¹, Dominik Kubicki², Marianela Escobar Castillo³, Andrei Karabanov³,

Vladimir V. Shvartsman³, Maria de Rosário Soares⁴, Valdas Šablinskas¹, Andrei N. Salak⁵, Doru

C. Lupascu³, Jūras Banys¹

¹Faculty of Physics, Vilnius University, Sauletekio al. 9, LT-10222 Vilnius, Lithuania

²Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

³Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany

⁴Central Analytical Laboratory, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

⁵Department of Materials and Ceramics Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal

Figure S1. X-ray diffractogram of CsPbBr₃ single crystal.

Table S1. Selected crystallographic data for the annealed CsPbBr₃ powder sample obtained using the laboratory X-ray (T = 215 K, Cu K α radiation, $\lambda \alpha_1 = 1.54053$ Å, $\lambda \alpha_2 = 1.54431$ Å) and refined in the *Pnma* space group ($\sqrt{2}a_p \times 2a_p \times \sqrt{2}a_p$ superstructure).

CsPbBr ₃
579.81
Orthorhombic
<i>Pnma</i> (62)
8.2745(3)
11.7116(3)
8.1249(3)
787.375(44)
4
7.3539 - 1.6685
2.85
3.14
4.25

For definition of the agreement factors χ^2 , R_p and R_{wp} see Ref.¹.

Table S2. Selected crystallographic data for the annealed CsPbBr₃ powder sample obtained using the laboratory X-ray (T = 210 K, Cu K α radiation, $\lambda \alpha_1 = 1.54053$ Å, $\lambda \alpha_2 = 1.54431$ Å) and refined in the *Pnma* space group ($\sqrt{2}a_p \times 2a_p \times \sqrt{2}a_p$ superstructure).

Chemical formula	CsPbBr ₃
Formula weight (g·mol ⁻¹)	579.81
Crystal system	Orthorhombic
Space group (No.)	<i>Pnma</i> (62)
<i>a</i> (Å)	8.2819(3)
<i>b</i> (Å)	11.7153(3)
<i>c</i> (Å)	8.1209(2)
$V(Å^3)$	787.939(42)
Ζ	4
<i>d</i> -space range (Å)	7.3539 - 1.6685
χ^2	2.83
$R_{\rm p}$ (%)	3.03
R_{wp} (%)	4.09

For definition of the agreement factors χ^2 , R_p and R_{wp} see Ref.¹

Figure S2. Full width at half maximum (FWHM) of the $(002)_p$ multiplet in the XRD patterns of CsPbBr₃ in the vicinity of the *Pbnm* - *P4/mbm* phase transition recorded upon heating and upon cooling.

Figure S3. Electric field dependence of polarization on electric field at T = 190 K.

Figure S3 represents the electric field dependence of polarization in $CsPbBr_3$ single crystal at 190 K temperature. It is evident that no polarization switching is observed up to 20 kV/cm.

Figure S4. Raman scattering spectra of CsPbBr₃ at different temperatures.

Figure S5. Raman scattering spectra of CsPbBr₃ at different temperatures.

References

¹ J. Rodríguez-Carvajal, Physica B: Condensed Matter **192**, 55 (1993).