Supplementary Material for Journal of Materials Chemistry A.

## Fabrication of CuO<sub>x</sub> nanowires@NiMnO<sub>x</sub> nanosheets core@shell-type electrocatalysts:

## crucial roles of defect modification and valence state for overall water electrolysis

Suchada Sirisomboonchai<sup>a</sup>, Xiumin Li<sup>b</sup>, Nutthaphak Kitiphatpiboon<sup>a</sup>, Rinrada Channoo<sup>c,d</sup>, Shasha Li<sup>e</sup>, Yufei Ma<sup>f</sup>, Suwadee Kongparakul<sup>d</sup>, Chanatip Samart<sup>d</sup>, Abuliti Abudula<sup>a</sup>, Guoqing Guan<sup>a,c,\*</sup>

- <sup>*a.*</sup> Graduate School of Science and Technology, Hirosaki University, 1-Bunkyocho, Hirosaki 036-8560, Japan.
- <sup>b.</sup> School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
- <sup>c.</sup> Energy Conversion Engineering Laboratory, Institute of Regional Innovation (IRI), Hirosaki University, 2-1-
- 3, Matsubara, Aomori 030-0813, Japan. \*e-mail: guan@hirosaki-u.ac.jp
- <sup>*d.*</sup> Department of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumtani 12120 Thailand
- e. College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.

<sup>f.</sup>School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China

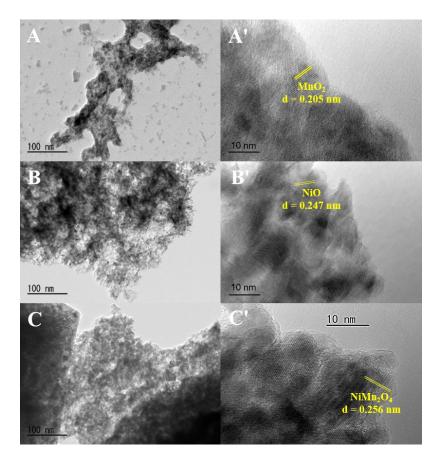
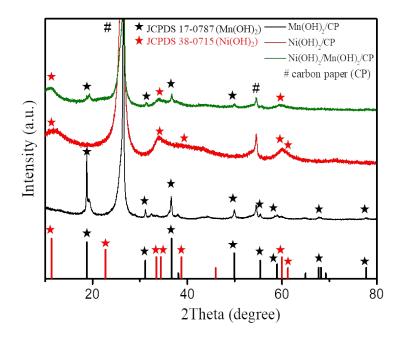
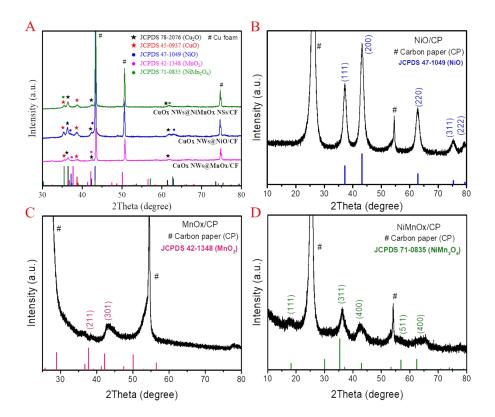
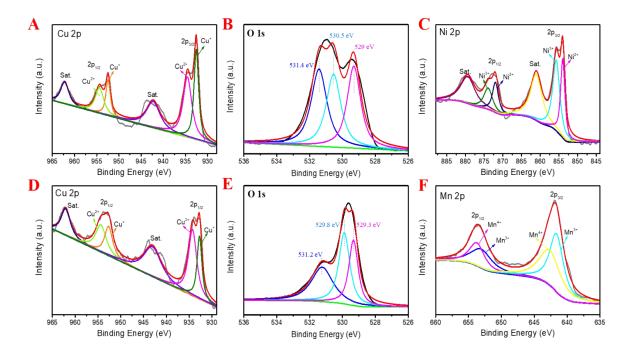
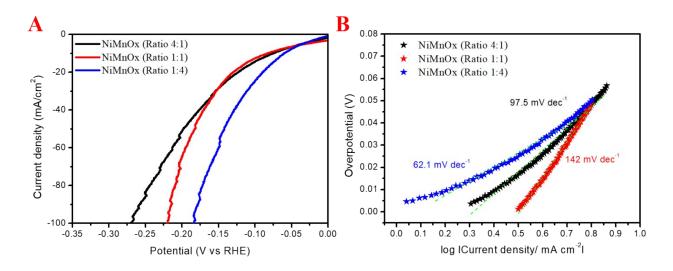



Figure S1. TEM images of (A, A') MnO<sub>x</sub>, (B, B') NiO, and (C, C') NiMnO<sub>x</sub> NSs.

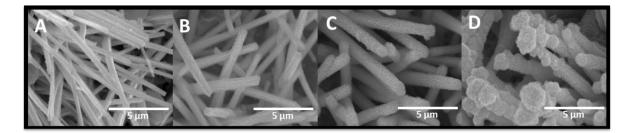






Figure S2. (A) XRD patterns of Mn(OH)<sub>2</sub>/CP, Ni(OH)<sub>2</sub>/CP and Mn(OH)<sub>2</sub>/Ni(OH)<sub>2</sub>/CP composite.

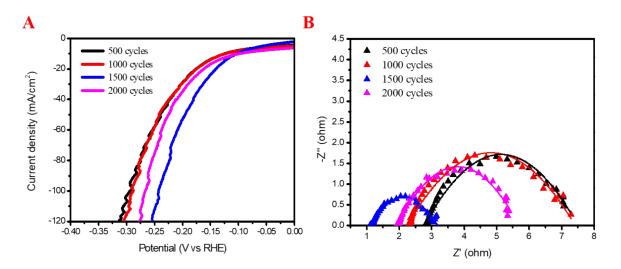


**Figure S3.** (A) XRD patterns of CuO<sub>x</sub> NWs@MnO<sub>x</sub>/CF, CuO<sub>x</sub> NWs@NiO/CF, CuO<sub>x</sub> NWs@NiMnO<sub>x</sub> NSs/CF. (B-D) XRD pattern of catalysts deposited on carbon paper (CP) substrate (D) NiO/CP (C) MnO<sub>x</sub>/CP (D) NiMnO<sub>x</sub> NSs/CP.

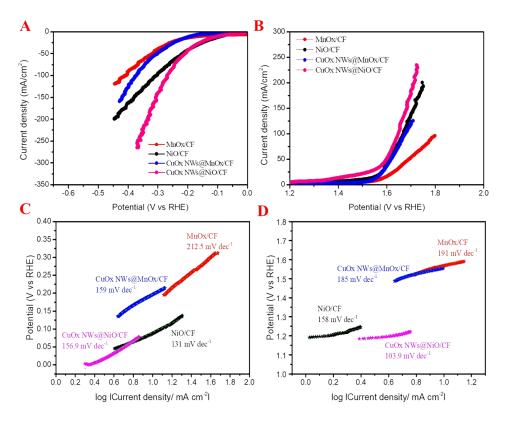



**Figure S4.** High-resolution XPS spectra of (A-C)  $CuO_x$  NWs@NiO: (A) Cu 2p, (B) O 1s, (C) Ni 2p, and (D-F)  $CuO_x$  NWs@MnO<sub>x</sub>: (D) Cu 2p, (E) O 1s, (F) Mn 2p.

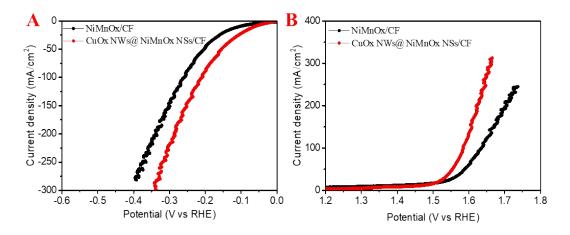



**Figure S5.** LSV polarization curves in 1.0 M KOH solution for HER over  $CuO_x$  NWs@NiMnO<sub>x</sub> NSs/CF electrodes prepared at different Ni/Mn ratios (4:1, 1:1 and 1:4) in the initial presursors (A) and related Tafel plots (B).

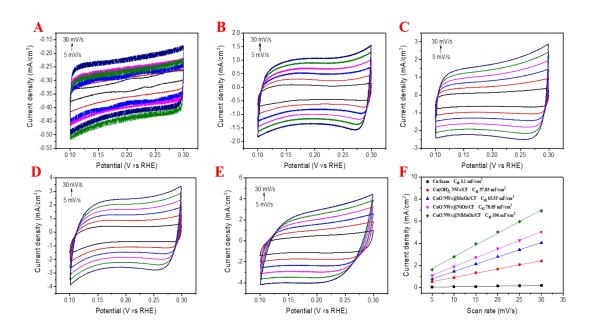



**Figure S6.** SEM images of  $CuO_x NWs@NiMnO_x NSs$  prepared with different molar ratios of Ni:Mn in the initial presursors: (A) 4:1 (B) 1:1 (C) 1:4.

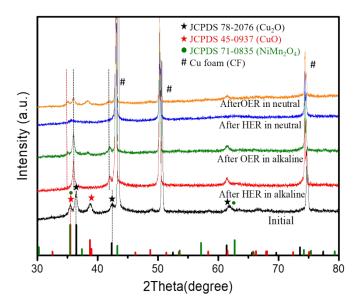



**Figure S7.** SEM images of  $CuO_x$  NWs@NiMnO<sub>x</sub> NSs prepared with different UPED deposition cycles: (A) 500 cycles (B) 1000 cycles (C) 1500 cycles and (D) 2000 cycles.

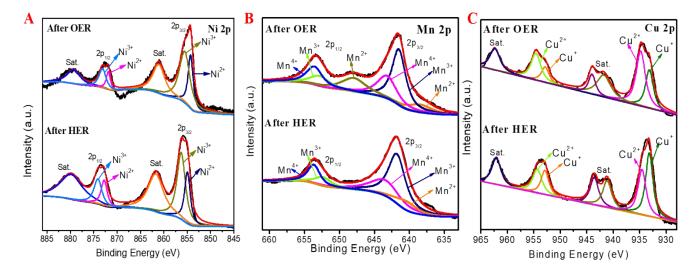



**Figure S8.** LSV polarization curves in the 1.0 M KOH solution for HER over  $CuO_x NWs@NiMnO_x NSs/CF$  electrodes prepared with different UPED deposition cycles (500, 1000, 1500 and 2000 cycles) (A) and the related Nyquist plots at a potential of 0.2 V (B).




**Figure S9.** Water electrolysis performance of MnO<sub>x</sub>/CF, NiO/CF, CuO<sub>x</sub> NWs@MnO<sub>x</sub>/CF and CuO<sub>x</sub> NWs@NiO/CF electrodes (A-B) LSV polarization curves at a scan rate of 2 mV/s in 1.0 M KOH solution: (A) HER and (B) OER. (C-D) Tafel plots (C) HER and (D) OER.

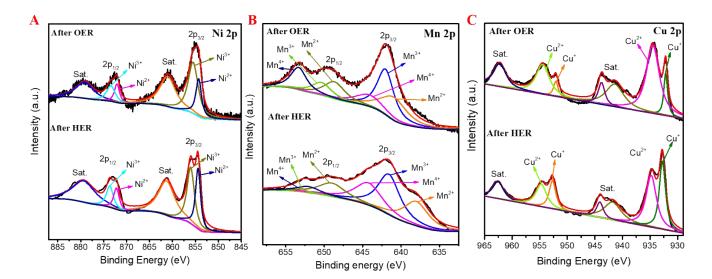



**Figure S10.** Comparison of LSV polarization curves over NiMnO<sub>x</sub>/CF and CuO<sub>x</sub>@ NiMnO<sub>x</sub>/CF in 1.0 M KOH solution at a scan rate of 2 mV/s. (A) HER and (B) OER.



**Figure S11.** Cyclic voltammetry curves of (A) bare CF (CF), (B)  $CuO_x NWs/CF$ , (C)  $CuO_x NWs@MnO_x/CF$ , (D)  $CuO_x NWs@NiO/CF$ , (E)  $CuO_x NWs@NiMnO_x NSs/CF$  collected between a potential range of 0.1-0.3 V (vs RHE) with scan rates of 5, 10, 15, 20, 25, 30 mV/s, respectively, in 1.0 M KOH solution. (F) Dependence of current on the scan rate at different double layer capacitances for the estimation of the electrochemical active surface area.

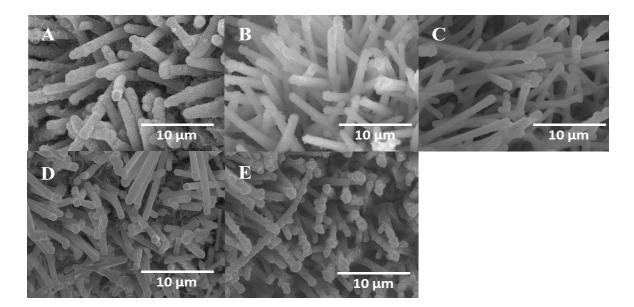



**Figure S12.** XRD pattern of CuO<sub>x</sub> NWs@ NiMnO<sub>x</sub> NSs/CF after HER and OER stability test in alkaline and neutral media solution.

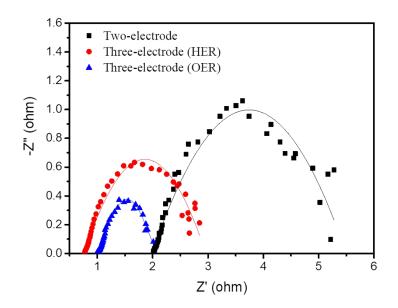


**Figure S13.** High-resolution XPS spectra of the  $CuO_x$  NWs@NiMnO<sub>x</sub> NSs after the stability test in the alkaline pH solutions for HER and OER: (A) Ni 2p, (B) Mn 2p and (C) Cu 2p.

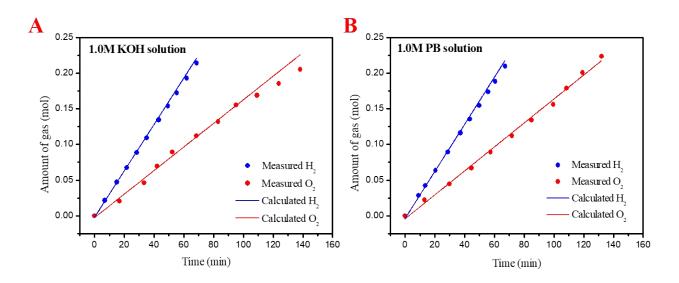
| Table S1. Element valence states of Ni, Mn and Cu species in the CuO <sub>x</sub> NWs@NiMnO <sub>x</sub> NSs and their relative |
|---------------------------------------------------------------------------------------------------------------------------------|
| percentage ratio based on the deconvolution of peak areas.                                                                      |


| Catalysts                | Peak area ratio of<br>Metal species (%)              |                                    |                                   |
|--------------------------|------------------------------------------------------|------------------------------------|-----------------------------------|
|                          | Mn <sup>2+</sup> /Mn <sup>3+</sup> /Mn <sup>4+</sup> | Ni <sup>2+</sup> /Ni <sup>3+</sup> | Cu <sup>+</sup> /Cu <sup>2+</sup> |
| After HER stability test | 10.22/52.84/36.94                                    | 59.00/41.00                        | 52.17 / 47.83                     |
| After OER stability test | 23.60/43.32/33.08                                    | 48.63/51.37                        | 35.37 / 64.63                     |
| Fresh                    | - / 57.16 / 42.84                                    | 39.07/ 60.93                       | 62.78 / 37.22                     |




**Figure S14.** High-resolution XPS spectra of the  $CuO_x NWs@NiMnO_x NSs$  after the stability test in the neutral pH solution for HER and OER: (A) Ni 2p, (B) Mn 2p and (C) Cu 2p.

| Catalysts                | Peak area ratio of metal species (%)                 |                                    |                                   |
|--------------------------|------------------------------------------------------|------------------------------------|-----------------------------------|
|                          | Mn <sup>2+</sup> /Mn <sup>3+</sup> /Mn <sup>4+</sup> | Ni <sup>2+</sup> /Ni <sup>3+</sup> | Cu <sup>+</sup> /Cu <sup>2+</sup> |
| After HER stability test | 34.95 / 36.74 / 28.31                                | 42.97 /57.03                       | 55.9 / 44.1                       |
| After OER stability test | 36.02 / 38.28 / 25.70                                | 32.39/67.61                        | 15.32 / 84.68                     |
| Fresh                    | - / 57.16 / 42.84                                    | 39.07/ 60.93                       | 62.78 / 37.22                     |


**Table S2.** Element valence states of Ni, Mn and Cu species in the  $CuO_x NWs@NiMnO_x NSs$  and their relative percentage ratio based on the deconvolution of peak areas.



**Figure S15.** SEM images of  $CuO_x$  NWs@NiMnO<sub>x</sub> NSs catalysts: (A) before test; (B) after HER stability test in 1.0 M KOH solution; (C) after HER stability test in neutral PB solution; (D) after OER stability test in 1.0 M KOH solutions; and (E) after OER stability test in in neutral PB solution.



**Figure S16.** Comparison of Nyquist plots of  $CuO_x$  NWs@NiMnO<sub>x</sub> NSs/CF electrodes in the two-electrode system and in the three-electrode system for HER and OER in 1.0 M KOH solution.



**Figure S17.** Theoretical hydrogen and oxygen evolution amounts vs. measured gas evolutions in 1.0 M KOH and 1.0 M PB solutions during the course of electrolysis using  $CuO_x NWs@NiMnO_x NSs/CF$  electrodes in the two-electrode system for overall water electrolysis.