Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Micro/nanostructured TiNb₂O₇-related Electrode Materials for High-Performance Electrochemical Energy Storage: Recent Advances and Future Perspectives

Hongkang Wang,^{a,*} Ruifeng Qian,^a Yonghong Cheng,^{a,*} Hong-Hui Wu,^c Xianwen Wu,^e Kunming Pan,^d Qiaobao Zhang^{b,*}

^a State Key Lab of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P R China.

^b Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, Fujian 361005, P R China.

^c Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, P R China.

^d Henan Key Laboratory of High-temperature Structural and Functional Materials & National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan University of Science and Technology, Luoyang 471003, P R China.

^e School of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, P R China.

*Corresponding authors: Hongkang Wang (<u>hongkang.wang@mail.xjtu.edu.cn</u>), Yonghong Cheng (<u>cyh@xjtu.edu.cn</u>) and Qiaobao Zhang (<u>zhangqiaobao@xmu.edu.cn</u>)

Materials	Preparation	Electrochemical performance	Initial coulombic	Potential	Electrolyte	Ref.
	method		efficiency	(V)		
TiNb ₂ O ₇ particles	Solid-state	281 mAh/g at 0.1 C	93.0% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	1
	reaction	250 mAh/g after 20 cycles at 0.1 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
TiNb ₂ O ₇ particles	Solid-state	256 mAh/g at 0.1 C	80.1% (0.1 C)	1.0-3.0 V	1M LiPF_6 dissolved in ethylene carbonate (EC),	2
	reaction	173 mAh/g after 200 cycles at 0.1 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Vacuum-annealed	Solid-state	260 mAh/g at 0.5 mA/cm	98.6% (0.5 mA/cm)	1.0-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	3
TiNb ₂ O ₇ particles	reaction	198 mAh/g after 50 cycles at 2.0 mA/cm ²			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
High-density TiNb ₂ O ₇	Solid-state	610 (530) mAh cm ⁻³ at 0.2 (5.0) C	~91.0% (54 mA/g)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	4
particles	reaction	305 mAh cm ⁻³ at 10 C			diethyl carbonate (DEC) (EC:DEC, 1:2 vol%)	
Ag-coated TiNb ₂ O ₇	Solid-state	275 (165) mAh/g at 1.0 (30) C	~93% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	5
particles	reaction	253 mAh/g after 100 cycles at 1.0 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
TiNb2O7 nanoparticles	Sol-gel	213 (76) mAh/g at 1.0 (10) C	98.0% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	6
	synthesis	175 mAh/g after 300 cycles at 1.0 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
Mo-doped TiNb ₂ O ₇	Sol-gel	270 (190) mAh/g at 1.0 (10) C	99.0% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	7
particles	synthesis	184 mAh/g at 100 C after charging at 1 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
Highly crystalline	Hydrothermal	341 (240) mAh/g at 60 (6000) mA/g	~97.0% (300 mA/g)	07-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	8
TiNb ₂ O ₇ particles	synthesis	271 mAh/g after 100 cycles at 300 mA/g			diethyl carbonate (DEC) (EC:DEC, 1:2 vol%)	
TiNb ₂ O ₇ /CNTs	Hydrolysis	346 (163) mAh/g at 0.1 (30) C	~99.0% (10 C)	0.8-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	9
	reaction	218 mAh/g after 100 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Porous TiNb ₂ O ₇	Hydrothermal	327 (167) mAh/g at 0.1 (50) C	94.0% (0.1 C)	1.0-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	10
nanospheres	synthesis	160 mAh/g after 1000 cycles at 5 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
Mesoporous TiNb ₂ O ₇	Hydrothermal	319 (89) mAh/g at 0.1 (30) C	93.5% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	11
microspheres	synthesis	155 mAh/g after 500 cycles at 10 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
Porosity-Controlled	Hydrothermal	286 (143) mAh/g at 0.1 (100) C	93.6% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	12
TiNb ₂ O ₇ Microspheres	synthesis	182 mAh/g after 1000 cycles at 5 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
Hierarchical TiNb ₂ O ₇	Hydrothermal	352 (100) mAh/g at 0.1 (20) C	85.7% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	13
microspheres	synthesis	115 mAh/g after 500 cycles at 10 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
rGO-wrapped TiNb ₂ O ₇	Hydrothermal	254 (117) mAh/g at 0.1 (50) C	93.3% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	14
microsphere	synthesis	120 mAh/g after 500 cycles at 5 C			ethyl methyl carbonate (EMC) (EC:EMC, 1:1	
					vol%)	
Hollow TiNb ₂ O ₇ @C	Hydrothermal	316 (159) mAh/g at 0.25 (10) C	99.5% (0.25 C)	0.01-3.0	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	15

 $Table \ S1. \ Preparations \ and \ electrochemical \ performance \ of \ various \ micro/nanostructured \ TiNb_2O_7 \ anodes.$

Ch	41	292 - 4h/z = 6 - 100 1 - 1 - 25 C		V	distingtion and a mate (DEC) (EC) DEC 1.1 and 10/)	
Spheres	synthesis		00.10/ (0.1.0)	V	dietnyl carbonate (DEC) (EC:DEC, 1:1 vol%)	16
Carbon-coated	Hydrothermal	311 (186) mAh/g at 0.1 (10) C	88.1% (0.1 C)	1.0-3.0 V	$1M \operatorname{LiPF}_6$ dissolved in ethylene carbonate (EC) and	10
Nb ₂ O ₅ /TiNb ₂ O ₇ porous	synthesis	245 mAh/g after 100 cycles at 0.1 C			ethyl methyl carbonate (EMC) (EC:EMC, 1:2	
spheres					vol%)	
TiNb ₂ O ₇ nanofibers	Electrospinning	327 (167) mAh/g at 0.1 (50) C	99.5% (1 C)	1.0-2.5 V	$1M \operatorname{LiPF}_6$ dissolved in ethylene carbonate (EC) and	17
	synthesis	327 mAh/g after 1000 cycles at 5 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
TiNb ₂ O ₇ nanofibers	Electrospinning	271 mAh/g at 150 mA/g	99.5% (150 mA/g)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	18
	synthesis	222 mAh/g after 150 cycles at 150 mA/g			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
"Nano-Pearl-String"	Electrospinning	284 (63) mAh/g at 0.1 (20) C	84.3% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	19
TiNb ₂ O ₇ fibers	synthesis	250 mAh/g after 50 cycles at 1 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
TiNb ₂ O ₇ hollow nanofiber	Electrospinning	323 mAh/g at 0.4 C	84.8% (0.4 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	20
	synthesis	158 mAh/g after 900 cycles at 10 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
Ti _{1-x} Nb _x N-TiNb ₂ O ₇	Electrospinning	254 (184) mAh/g at 1 (100) C	93.8% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	21
nanofibers	synthesis	174 mAh/g after 500 cycles at 5 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
MoS ₂ /TiNb ₂ O ₇ Hetero-	Electrospinning	844 (611) mAh/g at 0.2 (4) A/g	78.7% (1 A/g)	0.001-3.0	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	22
nanostructures	synthesis	733 mAh/g after 200 cycles at 1 A/g		V	diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
Hierarchical porous	Electrospinning	294 (180) mAh/g at 0.1 (100) C	84.0% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	23
TiNb ₂ O ₇ nanotubes	synthesis	220 mAh/g after 700 cycles at 1 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
TiNb2O7@carbon	Electrospinning	311 (75) mAh/g at 0.1 (6) A/g	89.0% (0.5 A/g)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	24
microwires	synthesis	195 mAh/g after 100 cycles at 0.5 A/g			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
TiNb ₂ O ₇ nanowires	Template	232 (168) mAh/g at 0.4 (6.0) A/g	89.1% (0.4 A/g)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	25
	directing sol-gel	98 mAh/g after 2000 cycles at 5.0 A/g			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
	method					
TiNb ₂ O ₇ nanorods	Sol-gel method	291 (84) mAh/g at 0.1 (50) C	91.1% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	26
		123 mAh/g after 500 cycles at 10 C			dimethyl carbonate (DMC) and ethyl methyl	
					carbonate (EMC) (EC:DMC:EMC, 1:1:1 vol%)	
TiNb ₂ O ₇ nanorods	Sol-gel method	337 (122) mAh/g at 0.1 (20) C	82.8% (0.1 C)	0.8-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	27
		140 mAh/g after 100 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Ordered Mesostructured	Sol-gel method	289 (116) mAh/g at 0.1 (50) C	86.0% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	28
TiNb ₂ O ₇		97 mAh/g after 2000 cycles at 10 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
3D ordered porous	Sol-gel method	329 (117) mAh/g at 0.1 (30) C	~99.0% (5 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	29
TiNb ₂ O ₇ nanotubes		235 mAh/g after 500 cycles at 5 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
Ordered microporous	Sol-gel method	251 (84) mAh/g at 1 (20) C	84.0% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	30
TiNb ₂ O ₇		87 mAh/g after 1000 cycles at 10 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	

Materials	Preparation	Rate/cycle performances	Initial coulombic	Potential	Electrolyte	Ref.
	method		efficiency	(V)		
Bulk Ti ₂ Nb ₁₀ O ₂₉	Solid-state	293 (168) mAh/g at 0.1 (110) C	94.2% (0.1 C)	1.0-2.4 V	$1M \text{ LiPF}_6$ dissolved in ethylene carbonate (EC) and	31
	reaction	144 mAh/g after 800 cycles at 10 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	
Bulk Cr _{0.6} Ti _{0.8} Nb _{10.6} O ₂₉	Solid-state	322 (204) mAh/g at 0.1 (10) C	94.7% (0.1 C)	0.8-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	32
	reaction	193 mAh/g after 500 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Ti ₂ Nb ₁₀ O ₂₉ /C composite	Solid-state	295.5 (201) mAh/g at 1 (10) C	~99.0% (1 C)	1.0-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	33
	reaction	214 mAh/g after 100 cycles at 5 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
Ti ₂ Nb ₁₀ O ₂₉ /Ag Composite	Solid-state	253 (173) mAh/g at 1 (10) C	94.9% (0.2 C)	1.0-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	34
	reaction	142 mAh/g after 500 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Ti ₂ Nb ₁₀ O ₂₉ hollow	Electrospinning	307 (176) mAh/g at 0.1 (10) C	90.8% (0.1 C)	0.8-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	35
nanofibers	synthesis	123 mAh/g after 500 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Porous Ti ₂ Nb ₁₀ O ₂₉	Solvothermal	312 (208) mAh/g at 0.1 (20) C	~92.0% (0.1 C)	0.8-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	36
nanospheres	synthesis	215 mAh/g after 500 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Ti ₂ Nb ₁₀ O ₂₉ /C	Solvothermal	277 (218) mAh/g at 1 (30) C	93.1% (10 C)	1.0-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate, ethyl	37
microspheres	synthesis	187 mAh/g after 200 cycles at 10 C			methyl carbonate and diethyl carbonate	
					(EC:EMC:DEC, 1:1:1 vol%)	
Graphene/Ti2Nb10O29/Hy		317 (220) mAh/g at 2 (20) C	~100.0% (10 C)	1.0-2.5 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	38
drogen molybdenum		174 mAh/g after 1000 cycles at 30C			diethyl carbonate (DEC) and dimethyl carbonate	
bronze composite arrays					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
Particulate	Solid-state	252 (187) mAh/g at 1 (10) C	~96.0% (0.1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	39
TiNb ₆ O ₁₇	reaction	80 mAh/g at 30 C			dimethyl carbonate (DMC) (EC:DMC, 1:2 vol%)	
TiNb ₆ O ₁₇ /C	Solid-state	239 (200) mAh/g at 1 (10) C	~92.0% (1 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	40
composite	reaction	165 mAh/g after 500 cycles at 10 C			dimethyl carbonate (DMC) and ethyl methyl	
					carbonate (EMC) (EC:DMC:EMC, 1:1:1 vol%)	
mesoporous	Solvothermal	274 (175) mAh/g at 1 (30) C	95.9% (0.2 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate, ethyl	41
TiNb ₆ O ₁₇ microspheres	synthesis	160 mAh/g after 500 cycles at 10 C			methyl carbonate and diethyl carbonate	

Table S2. Preparation method and electrochemical performance of analogues of $TiNb_2O_7$ as LIBs anode.

					(EC:EMC:DEC, 1:1:1 vol%)	
Porous	Solvothermal	261 (181) mAh/g at 1 (20) C	85.7% (0.1 C)	0.8-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC),	42
TiNb ₂₄ O ₆₂ microspheres	synthesis	183 mAh/g after 500 cycles at 10 C			diethyl carbonate (DEC) and dimethyl carbonate	
					(DMC) (EC:DEC:DMC, 1:1:1 vol%)	
nitrogen-doped	Electrospinning	210 (177) mAh/g at 1 (6) C	~90.0% (0.25 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	43
carbon coated TiNb ₂₄ O ₆₂	synthesis	149 mAh/g after 900 cycles at 10 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
nanowires						
Ti ₂ Nb ₂ O ₉	Topotactic	144 mAh/g at 0.1 C		1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	44
	reactions	125 mAh/g after 30 cycles at 0.1 C			dimethyl carbonate (DMC) (EC:DMC, 1:1 vol%)	
H _{0.92} K _{0.08} TiNbO ₅	Electrospinning,	186 (93) mAh/g at 0.5 (5.0) C	70.7% (0.5 C)	1.0-3.0 V	1M LiPF ₆ dissolved in ethylene carbonate (EC) and	45
Nanowires microspheres	ion-exchange	124 mAh/g after 150 cycles at 0.5 C			diethyl carbonate (DEC) (EC:DEC, 1:1 vol%)	

Reference

- 1. X. Lu, Z. Jian, Z. Fang, L. Gu, Y.-S. Hu, W. Chen, Z. Wang and L. Chen, *Energy Environ. Sci.*, 2011, 4, 2638-2644.
- 2. X. Wu, S. Lou, X. Cheng, C. Lin, J. Gao, Y. Ma, P. Zuo, C. Du, Y. Gao and G. Yin, *Acs Applied Materials & Interfaces*, 2018, **10**, 27056-27062.
- 3. R. Inada, T. Mori, R. Kumasaka, R. Ito, T. Tojo and Y. Sakurai, *International Journal of Applied Ceramic Technology*, 2019, 16, 264-272.
- 4. N. Takami, K. Ise, Y. Harada, T. Iwasaki, T. Kishi and K. Hoshina, *Journal of Power Sources*, 2018, **396**, 429-436.
- 5. G. Liu, X. Liu, Y. Zhao, X. Ji and J. Guo, *Materials Letters*, 2017, 197, 38-40.
- 6. L. Fei, Y. Xu, X. Wu, Y. Li, P. Xie, S. Deng, S. Smirnov and H. Luo, *Nanoscale*, 2013, 5, 11102-11107.
- 7. H. Song and Y.-T. Kim, *Chemical Communications*, 2015, **51**, 9849-9852.
- 8. K. Ise, S. Morimoto, Y. Harada and N. Takami, *Solid State Ionics*, 2018, **320**, 7-15.
- 9. C. Lin, L. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang and Z. Guo, *Electrochim. Acta* 2018, 260, 65-72.
- 10. Q. Cheng, J. Liang, N. Lin, C. Guo, Y. Zhu and Y. Qian, *Electrochimica Acta*, 2015, **176**, 456-462.
- 11. G. Liu, L. Zhao, R. Sun, W. Chen, M. Hu, M. Liu, X. Duan and T. Zhang, *Electrochimica Acta*, 2018, 259, 20-27.
- 12. H. Park, H. B. Wu, T. Song, X. W. Lou and U. Paik, Advanced Energy Materials, 2015, 5.
- 13. H. Li, L. Shen, G. Pang, S. Fang, H. Luo, K. Yang and X. Zhang, *Nanoscale*, 2015, 7, 619-624.
- 14. H. Noh and W. Choi, Journal of the Electrochemical Society, 2016, 163, A1042-A1049.
- 15. G. Zhu, Q. Li and R. Che, *Chemistry-a European Journal*, 2018, **24**, 12932-12937.
- 16. S. Yoon, S.-Y. Lee, N. Tuan Loi, I. T. Kim, S.-G. Woo and K. Y. Cho, Journal of Alloys and Compounds, 2018, 731, 437-443.
- 17. V. Aravindan, J. Sundaramurthy, A. Jain, P. S. Kumar, W. C. Ling, S. Ramakrishna, M. P. Srinivasan and S. Madhavi, *Chemsuschem*, 2014, 7, 1858-1863.
- 18. S. Jayaraman, V. Aravindan, P. S. Kumar, W. C. Ling, S. Ramakrishna and S. Madhavi, *Acs Applied Materials & Interfaces*, 2014, **6**, 8660-8666.

- 19. K. Tang, X. Mu, P. A. van Aken, Y. Yu and J. Maier, *Advanced Energy Materials*, 2013, **3**, 49-53.
- 20. H. Yu, H. Lan, L. Yan, S. Qian, X. Cheng, H. Zhu, N. Long, M. Shui and J. Shu, Nano Energy, 2017, 38, 109-117.
- 21. H. Park, T. Song and U. Paik, *Journal of Materials Chemistry A*, 2015, **3**, 8590-8596.
- 22. P.-C. De, J. H. Choi, J. Yun, A. S. Bandarenka, J. Kim, P. V. Braun, S. Y. Jeong and C. R. Cho, Acs Nano, 2017, 11, 1026-1033.
- 23. H. Park, D. H. Shin, T. Song, W. I. Park and U. Paik, *Journal of Materials Chemistry A*, 2017, 5, 6958-6965.
- 24. X. Wang and G. Shen, *Nano Energy*, 2015, **15**, 104-115.
- 25. H. Li, Y. Zhang, Y. Tang, F. Zhao, B. Zhao, Y. Hu, H. Murat, S. Gao and L. Liu, Applied Surface Science, 2019, 475, 942-946.
- 26. S. Lou, Y. Ma, X. Cheng, J. Gao, Y. Gao, P. Zuo, C. Du and G. Yin, *Chemical Communications*, 2015, 51, 17293-17296.
- 27. L. Hu, C. Lin, C. Wang, C. Yang, J. Li, Y. Chen and S. Lin, *Functional Materials Letters*, 2016, 9.
- 28. C. Jo, Y. Kim, J. Hwang, J. Shim, J. Chun and J. Lee, *Chemistry of Materials*, 2014, 26, 3508-3514.
- 29. H. Li, L. Shen, J. Wang, S. Fang, Y. Zhang, H. Dou and X. Zhang, Journal of Materials Chemistry A, 2015, 3, 16785-16790.
- S. Lou, X. Cheng, Y. Zhao, A. Lushington, J. Gao, Q. Li, P. Zuo, B. Wang, Y. Gao, Y. Ma, C. Du, G. Yin and X. Sun, *Nano Energy*, 2017, 34, 15-25.
- 31. Q. Cheng, J. Liang, Y. Zhu, L. Si, C. Guo and Y. Qian, *Journal of Materials Chemistry A*, 2014, **2**, 17258-17262.
- 32. C. Yang, S. Yu, Y. Ma, C. Lin, Z. Xu, H. Zhao, S. Wu, P. Zheng, Z.-Z. Zhu, J. Li and N. Wang, *Journal of Power Sources*, 2017, **360**, 470-479.
- 33. G. Liu, B. Jin, R. Zhang, K. Bao, H. Xie, J. Guo, M. Wei and Q. Jiang, International Journal of Hydrogen Energy, 2016, 41, 14807-14812.
- 34. W. Mao, K. Liu, G. Guo, G. Liu, K. Bao, J. Guo, M. Hu, W. Wang, B. Li, K. Zhang and Y. Qian, *Electrochimica Acta*, 2017, 253, 396-402.
- 35. Q. Fu, J. Hou, R. Lu, C. Lin, Y. Ma, J. Li and Y. Chen, *Materials Letters*, 2018, 214, 60-63.
- 36. X. Xia, S. Deng, S. Feng, J. Wu and J. Tu, Journal of Materials Chemistry A, 2017, 5, 21134-21139.
- 37. X. Liu, H. Wang, S. Zhang, G. Liu, H. Xie and J. Ma, *Electrochimica Acta*, 2018, **292**, 759-768.
- 38. S. Deng, D. Chao, Y. Zhong, Y. Zeng, Z. Yao, J. Zhan, Y. Wang, X. Wang, X. Lu, X. Xia and J. Tu, *Energy Storage Materials*, 2018, **12**, 137-144.
- 39. Y.-S. Lee and K.-S. Ryu, Scientific Reports, 2017, 7.
- 40. W. Mao, K. Bao, L. Wang, G. Liu, H. Xie, R. Zhang, S. Zheng, J. Guo, B. Li and W. Wang, Ceram. Int., 2016, 42, 16935-16940.
- 41. X. Liu, G. Liu, M. Liu, M. Hu, Y. Hu and J. Ma, *Journal of Alloys and Compounds*, 2019, **787**, 344-351.
- 42. C. Yang, S. Deng, C. Lin, S. Lin, Y. Chen, J. Li and H. Wu, *Nanoscale*, 2016, **8**, 18792-18799.
- 43. H. Yu, X. Cheng, H. Zhu, R. Zheng, T. Liu, J. Zhang, M. Shui, Y. Xie and J. Shu, *Nano Energy*, 2018, 54, 227-237.
- 44. J. F. Colin, V. Pralong, M. Hervieu, V. Caignaert and B. Raveau, *Chemistry of Materials*, 2008, 20, 1534-1540.
- 45. Y. Yuan, H. Yu, X. Cheng, W. Ye, T. Liu, R. Zheng, N. Long, M. Shui and J. Shu, *Acs Applied Materials & Interfaces*, 2019, **11**, 9136-9143.