In-built bionic "MoFe-cofactor" in Fe-doped two-dimensional

MoTe₂ nanosheets for boosting the photocatalytic nitrogen

reduction performance

Hongda Li^{a,*}, Shaonan Gu^c, Zijun Sun^a, Fei Guo^a, Yuanmiao Xie^a, Boran Tao^a, Xiong He^a, Wenfeng Zhang^b, Haixin Chang^{b,*}

^a Center for Materials Science and Engineering, School of Mechanical and Transportation Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China

^b Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

^c Key Laboratory of Fine Chemicals in Universities of Shandong, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China

Email: hxchang@hust.edu.cn; hdli@gxust.edu.cn

Figure S1. SEM images of the (a) pure $MoTe_2$, (b) 1% Fe-MoTe₂, (c) 2% Fe-MoTe₂ and (d) 5% Fe-MoTe₂.

Figure S2. AFM images of (a) pure MoTe₂ and (b,c) 2% Fe-MoTe₂; (c) Statistical diagram of the thickness for 2% Fe-MoTe₂.

Figure S3. ¹H NMR spectra of the filtered reaction solution under ${}^{15}N_2$ atmosphere over 2% Fe-MoTe₂ and ${}^{15}NH_4^+$ standard solution

Figure S4. XPS spectra of (a) Mo 3d and (b) Fe 2p in 2% Fe-MoTe₂ before and after photocatalytic reaction

Figure S5. Schematic diagram of the redox potentials vs. NHE (pH=7) for the conduction band and valence band of the pure MoTe₂ and 2% Fe-MoTe₂ samples.

Samples	Crystal Vol	Lattice Parameters		
	(ų)	a (Å)	b (Å)	c (Å)
pure MoTe ₂	149.84	3.5198	3.5198	13.9658
1% Fe-MoTe ₂	149.83	3.5197	3.5197	13.9654
2% Fe-MoTe ₂	149.74	3.5188	3.5188	13.9650
5% Fe-MoTe ₂	149.52	3.5163	3.5163	13.9641

Table S1. Unit cell parameters of the pure MoTe₂, 1% Fe-MoTe₂, 2% Fe-MoTe₂ and 5% Fe-MoTe₂ samples

				-	-
Samples		pure MoTe ₂	1% Fe-MoTe ₂	2% Fe-MoTe ₂	5% Fe-MoTe ₂
Element s	Te/mol%	51.04	50.58	50.84	51.97
	Mo/mol%	48.96	48.99	48.34	46.11
	Fe/mol%	_	0.43	0.82	1.92
Surface areas/(m ² g ⁻¹)		38.559	36.735	38.142	33.821
$\frac{Fe}{Molar ratio of Mo} /\%$		_	0.88	1.70	4.16

Table S2. Surface areas and real contents of Fe element in as-prepared $MoTe_2$ samples

Samples	A ₁	τ1	A ₂	τ2	Weighted average τ
	(%)	(ns)	(%)	(ns)	(ns)
Pure MoTe ₂	89.44	1.66	10.56	35.09	5.19
1% Fe-MoTe ₂	34.53	15.37	65.47	81.99	58.99
2% Fe-MoTe ₂	14.88	7.44	85.12	97.41	84.02
5% Fe-MoTe ₂	85.49	1.57	14.51	64.27	10.67

Table S3. Fluorescence lifetime parameters of samples from fitting curves of the Fluorescence

 decay measurements

Catalysts	Scavenger	Light Source	$\rm NH_3$ generation rate $\mu mol~g^{-1}~h^{-1}$	Referenc e
Fe-doped MoTe ₂	None	300 W Xe lamp, λ>420 nm	129.08	This work
BiOBr with oxygen vacancies	None	300 W Xe lamp, λ>420 nm	104.2	S1
Cu-doped TiO ₂	None	300 W Xe lamp, λ=200– 800 nm	78.9	S2
Fe-Al/graphene	None	500 W Xe lamp, λ>400 nm	25.3	\$3
Br-doped BiOCl with exposed {001} facets	None	300 W Xe lamp, λ>400 nm	126	S4
$g-C_3N_4$ -carbon vacancies	None	300 W Xe lamp	84	S5
Defect-rich Bi ₃ O ₄ Br	None	300 W Xe lamp	50.4	S6
Fe@3D graphene	None	500 W high-pressure Hg lamp	24	S7
Co-GCN	Methanol	250 W high-pressure sodium lamp	161.1	S8

 Table S4. Photocatalytic nitrogen fixation performance of different catalysts under various

 reaction conditions

[S1] H. Li, J. Shang, Z. H. Ai, L. Z. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets, *J. Am. Chem. Soc.*, 2015, **137**, 6393-6399.

[S2] Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Tuning Oxygen Vacancies in Ultrathin TiO₂ Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm, *Adv. Mater.*, 2019, **31**, 1806482.

[S3] Y. Yang, T. Zhang, Z. Ge, Y. Lu, H. Chang, P. Xiao, R. Zhao, Y. Ma, Y. Chen, Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al₂O₃, *Carbon*, 2017, **124**, 72–78.

[S4] D. Wu, R. Wang, C. Yang, Y. An, H. Lu, H. Wang, K. Cao, Z. Gao, W. Zhang, F. Xu, K. Jiang, Br doped porous bismuth oxychloride micro-sheets with rich oxygen vacancies and dominating {0 0 1} facets for enhanced nitrogen photo-fixation performances. *J. Colloid Interf. Sci.*, 2019, **556**, 111-119.

[S5] Y. Zhang, J. Di, P. Ding, J. Zhao, K. Gu, X. Chen, Y. Cheng, S. Yin, J. Xia, H. Li, Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. *J. Colloid Interf. Sci.*, 2019, **553**, 530-539.

[S6] J. Di, J.X. Xia, M.F. Chisholm, J. Zhong, C. Chen, X.Z. Cao, F. Dong, Z. Chi, H.L. Chen, Y.X. Weng, J. Xiong, S.Z. Yang, H.M. Li, Z. Liu, S. Dai, Defect-tailoring mediated electronhole separation in single unit cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation, *Adv. Mater.*, 2019, **31**, 1807576.

[S7] Y.H. Lu, Y. Yang, T.F. Zhang, Z. Ge, H.C. Chang, P.S. Xiao, Y.Y. Xie, L. Hua, Q.Y. Li, H.Y. Li, B. Ma, N.J. Guan, Y.F. Ma, Y.S. Chen, Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis, *ACS Nano*, 2016, **10**, 10507-10515.

[S8] K.Y. Wang, G.Z. Gu, S.Z. Hu, J. Zhang, X.L. Sun, F. Wang, P. Li, Y.F. Zhao, Z.P. Fan, X. Zou, Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N₂ fixation: Experiment and DFT simulation analysis, *Chem. Eng. J.*, 2019, **368**, 896-904.