Electronic Supplementary Information

High-Performance, Long Lifetime Chloride Ion Battery using a NiFe-Cl Layered Double Hydroxide Cathode

Qing Yin,^{#a} Jianeng Luo,^{#a} Jian Zhang,^a Lirong Zheng,^c Guoqing Cui,^a Jingbin Han,^{*a} and Dermot O'Hare^{*b}

- # These authors contributed equally to this work.
- a. State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, P. R. China
- b. Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
- c. Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, P. R. China.

Fig. S1. Powder XRD pattern of NiFe-CO₃ LDH.

Fig. S2. FT-IR spectra of (a) NiFe-CO₃ LDH and (b) NiFe-Cl LDH.

Fig. S3. SEM image of NiFe-CO₃ LDH.

Fig. S4. Thermogravimetry analysis of (a) NiFe-CO₃ LDH and (b)NiFe-Cl LDH.

Fig. S5 XRD patterns of Ni_xFe-Cl LDH samples (x = 2, 3, 4 and 5). For ease of comparison, the black line is the same as that shown in Fig. 1a.

Fig. S6 Cycle performances of Li/Ni_xFe-Cl LDH cells (x = 2, 3, 4 and 5) at the current density of 100 mA g⁻¹. For ease of comparison, the black line (x = 2) is the same as that shown in Fig. 2c.

Cathode	Current density (mA g ⁻¹)	Best capacity (mAh g ⁻¹)	Capacity after 30cycles (mAh g ⁻¹)	Cycle life	Ref.
NiFe-Cl LDH	100	370.6	156.1	800	This work
BiCl ₃	3	142.9	55 (3th cycle)	3	1
BiOCl	5	63	43 (6th cycle)	6	2
FeOCl	10	158	60	40	2
VOCI	522	151	120	100	3
PPy/CNT	10	118	90	40	4
FeOCI/CMK-3	10	202	165	30	5
PANI/CNT	10	92	88	50	6
Sb ₄ O ₅ Cl ₂ -GAG	10	327	65	80	7
FeOCl@PPy	10	187	155	30	8
CoFe-Cl LDH	10	249.3	160	100	9

Table S1. Comparison of electrochemical performance of cathode materials in CIB system.

Fig. S7. Energy dispersive X-ray spectroscopy (EDS) results of the NiFe-Cl LDH cathode at (a) 1.2V and (b) 3.0V.

Fig. S8. Cl atomic ratio (Cl/[Cl+Fe+Ni]) of NiFe-Cl LDH cathode in different charge/discharge states (obtained from EDS analysis).

Fig. S9. The first-order derivative from Fe K-edge XANES spectra of NiFe-Cl LDH in (a) charge and (b) discharge process.

Fig. S10. The first-order derivative from Ni K-edge XANES spectra of NiFe-Cl LDH in (a) charge and (b) discharge process.

Fig. S11. SEM image of the NiFe-Cl LDH cathode after 800 charge/discharge cycles.

Fig. S12. XPS spectra of Li anode at fully charged and discharged states.

References

[1] X. Zhao, S. Ren, B. Michael and M. Fichtner, *J. Power Sources*, 2013, 245, 706–711.

[2] X. Zhao, Z. Zhao-Karger, D. Wang and M. Fichtner, *Angew. Chem. Int. Ed.*, 2013, 52, 13621–13624.

[3] P. Gao, M. A. Reddy, X. Mu, T. Diemant, L. Zhang, Z. Z. Karger, V. S. K. Chakravadhanula, O. Clemens, R. J. Behm and M. Fichtner, *Angew. Chem. Int. Ed.*, 2016, 55, 4285–4290.

[4] X. Zhao, Z. Zhao, M. Yang, H. Xia, T. Yu and X. Shen, *ACS Appl. Mater. Interfaces*, 2017, 9, 2535–2540.

[5] Z. Zhao, T. Yu, Y. Miao and X. Zhao, *Electrochim. Acta*, 2018, 270, 30–36.

[6] T. Yu, Q. Li, X. Zhao, H. Xia, L. Ma, J. Wang, Y. Meng and X. Shen, ACS Energy

- Lett., 2017, 2, 2341–2348.
- [7] K. P. Lakshmi, K. J. Janas and M. M. Shaijumon, J. Power Sources, 2019, 433, 126685.
- [8] R. Yang, T. Yu and X. Zhao, J. Alloys Compd., 2019, 788, 407-412.
- [9] Q. Yin, D. Rao, G. Zhang, Y. Zhao, J. Han, K. Lin, L. Zheng, J. Zhang, J. Zhou and
- M. Wei, Adv. Funct. Mater., 2019, 29, 1900983.