Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information for

Double-Shelled Hollow Carbon Nanospheres as an Enclosed Electrochemical Reactor to

Enhance the Lithium Storage Performance of Silicon Nanodots

Ruiyu Zhu,^{a,c} Xuejiao Hu,^a Kai Chen,^b Jie Dang,^a Xiujuan Wang,^a Xiaojie Liu, *,^{a,c} and Hui Wang*,^{a,c}

- a. Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials science, Northwest University, Xi'an 710127, PR China.
- b. Department of Materials Science & Engineering, Pusan National University, Busan, 46241, Korea.
- c. Shaanxi Joint Lab of Graphene (NWU), Xi'an 710127, PR China.
- E-mail: huiwang@nwu.edu.cn (H.Wang), xiaojie.liu@nwu.edu.cn (X. J. Liu)

Figure S1. SEM images and particle size distributions of (a) $SiO_2@SiO_2/RF$, (b)SiO₂@SiO₂/C, (c) SiNDs@SSHC, (d) $SiO_2@SiO_2/RF@SiO_2@SiO_2/RF$, (e) $SiO_2@SiO_2/C@SiO_2@SiO_2/C$ and (f) SiNDs@DSHC.

Figure S2. SEM images with low magnifications of (a) SiO₂@SiO₂/RF, (b)SiO₂@SiO₂/C, (c) SiNDs@SSHC, (d) SiO₂@SiO₂/RF@SiO₂@SiO₂/RF, (e) SiO₂@SiO₂/C@SiO₂@SiO₂/C and (f) SiNDs@DSHC.

(a) $\frac{100}{262\pm 22 \text{ nm}}$ (b)	(c) Analysis of spectrum : Spectra from Area				
			1	2	3
140 this and 200 220 240 200 Size(nm)	C		29.52	30.59	37.80
010nm	Si	i	70.48	69.41	62.20

Figure S3. (a and b) SEM low and high magnification images of SiO₂ stirred for 15min. (c) The element distributions of C and Si in different regions in Figure 2(g).

Figure S4. (a and b) TEM low and high magnification images (c) EDS elemental mapping images of carbon, silicon and overlap. (d) EDX line scan imageof SiNDs@SSHC.

Figure S5. EDX elemental mapping images of sodium, silicon, carbon and overlap of SiNDs@DSHC soaked in NaPF₆ for 24 h.

Figure S6. (a) SEM (b) TEM (c) Nitrogen adsorption/ desorption isotherm and the inset shows BJH pore size distribution of SSHC. (d) SEM (e) TEM (f) Nitrogen adsorption/ desorption isotherm and the inset shows BJH pore size distribution of DSHC.

Figure S7. EDX elemental mapping images of carbon, silicon and overlap of calcining hollow carbon and Mg.

Figure S8. (a) SEM (b) TEM and (c) Nitrogen adsorption/ desorption isotherm and the inset shows BJH pore size distribution of $SiO_2@C$. (d) SEM (e) TEM and (f) Nitrogen adsorption/ desorption isotherm and the inset shows BJH pore size distribution of etched $SiO_2@C$.

Figure S9. (a) The equivalent circuit. (b) Relationship between Z' and $\omega^{-1/2}$ in the low-frequency region. (c and d) GITT curves of SiNDs@DSHC.

Figure S10. (a) Corresponding log i versus log v plots at each redox peak (peak current: i, scan rate: v) and (b) CV curve with the capacitance control shown by the shaded region at a scan rate of 0.2 mV s^{-1} (c) bar chart showing the percent of capacitance control at different scan rates of SiNDs@DSHC.

Figure S11. (a) Second discharge (LiCoO₂ electrode in the half battery, upper portion) and charge (SiNDs@DSHC composite in the half battery, lower portion) curves. (b) Second charge (LiCoO₂ electrode in the half battery, upper portion) and discharge (SiNDs@DSHC composite in the half battery, lower portion) curves. (c) Charge-discharge profiles of SiNDs@DSHC as anode materials in full cells.

Figure S12. (a) The side view and top view of the interface between single graphene layer and silicon (111) plane, (b) the density of state (DOS) of the heterostructure C/Si, (c) DOSs of individual silicon and (d) graphene.

Sample	R _s /Ohm	R _f /Ohm	R _{ct} /Ohm
SiNDs@SSHC	7.7	74.3	265.0
SiNDs@DSHC	7.3	44.7	30.5
SiNDs@DSHC after 1000 cycles	4.6	17.8	56.3

 Table S1. Fitted electrochemical impedance parameters.