Supporting Information

Conductive Polyaniline Doped with Phytic Acid as Binder and Conductive Additive for Commercial Silicon Anode with Enhanced Lithium Storage Properties

Chengkun Zhang, Qiulin Chen, Xin Ai, Xiaogang Li, Qingshui Xie*, Yong Cheng, Hufan Kong, Wanjie Xu, Laisen Wang, Ming-Sheng Wang, Hui Yang* and Dong-Liang Peng*

Figure S1. SEM and TEM images of (a-c) pristine SiNPs, (d-f) Si@SiO_x NPs and (g-i) PANi.

Figure S2. TG curve of Si@SiO_x.

Figure S3. The TEM images of (a) $Si@SiO_x-1$ h, (b) $Si@SiO_x-3$ h and (c) $Si@SiO_x-5$ h. (d) The cycling properties at 1 A g⁻¹ of $Si@SiO_x/PANi-100-1$ h, $Si@SiO_x/PANi-100-3$ h and $Si@SiO_x/PANi-100-5$ h anodes

The influence of SiO_x thickness on cycling performance. In order to display the influence of the SiO_x layer thickness on cycling performance of Si-based anodes, Si@SiO_x nanoparticles with controllable thickness of SiO_x layer are synthesized by adjusting the heating time at 600 $^{\circ}$ C in air. Si@SiO_x nanoparticles with heating time ranging from 1 h, 3 h to 5 h are produced and marked as Si@SiO_x-1 h, Si@SiO_x-3 h and Si@SiO_x-5 h, respectively. As shown in Figure S3, the SiO_x layer thicknesses of Si@SiO_x-1 h, Si@SiO_x-3 h and Si@SiO_x-5 h are about 2.3 nm, 3 nm and 3.2 nm, respectively. The prepared Si-based anodes are marked as Si@SiO_x/PANi-100-1 h, Si@SiO_x/PANi-100-3 h and Si@SiO_x/PANi-100-5 h, and the corresponding cycling performances are shown in Figure S3d. Although the specific capacity of Si@SiO_x/PANi-100-1 h electrode is higher than Si@SiO_x/PANi-100-3 h anode in the first few dozen cycles, it decreases more quickly in the following cycles, hinting worse cycling performance. Si@SiO_x/PANi-100-5 h electrode shows reduced reversible capacity because of the increased thickness of SiO_x layer. Undoubtedly, the optimal heating time is 3 h, and the produced Si@SiO_x/PANi-100-3 h anode in this work shows highest specific capacity and best cycling stability.

Figure S4. The EIS spectra of different Si@SiO_x/PANi anodes after two cycles.

Figure S5. Cyclability of the $Si@SiO_x/PANi-100$, $Si@SiO_x/PVDF$, and $Si@SiO_x/CMC$ electrodes at 0.5 (a) and 1 A g⁻¹ (b).

Figure S6. The mechanism of losing contact between conductive additive and Si active particles using CMC as binder.

Figure S7. The discharge capacity of pure PANi at 1 A g⁻¹.

Figure S8. (a) Survey scan, (b) Si 2p, (c) C 1s, (d) N 1s, (e) F 1s and (f) Li 1s XPS spectra of Si@SiO_x/PANi-100 after 500 cycles.

Figure S9. (a) FT-IR and (b) Raman spectra of Si@SiO_x/PANi-100 after 100 cycles.

Figure S10. The force-distance curves of peeling test for Si@SiO_x/PANi-100 electrode.

The adhesive properties of PANi. As a binder, the adhesive properties of PANi are investigated by peeling test. A 10-mm-wide and 30-mm-long electrode sample is attached to 3M tape, and the peel strength of the electrode specimens is measured with tensile machine (Microtester 5948, Instron). By pulling the tape at a constant displacement rate of 100 μ m/s, the applied load is continuously monitored and force-displacement plots are made. As shown in Figure 6, the initial peeling force is about 0.35 N, which is comparable to conventional PVDF

and CMC binders.^{1, 2} And binder ability of PANi should be further enhanced via adjusting the degree of acid doping and cross-linking of PANi, which is ongoing.

O content (wt. %)
2.61
6.89
8.23
8.99

Table S1. The O contents for $Si@SiO_x$ with different heating time at 600 °C.

Table S2. The EIS fitting values of different electrodes after 2 cycles

	Si@SiO _x /PANi-50	Si@SiO _x /PANi-100	Si@SiO _x /PANi-200
R _{sol} (ohm)	0.373	0.435	0.473
R _{ct} (ohm)	34.89	24.20	18.02

References

- 1. D. Yao, J. Feng, J. Wang, Y. Deng and C. Wang, J. Power Sources, 2020, 463.
- 2. M.-H. Ryou, J. Kim, I. Lee, S. Kim, Y. K. Jeong, S. Hong, J. H. Ryu, T.-S. Kim, J.-K. Park,
- H. Lee and J. W. Choi, Adv. Mater, 2013, 25, 1571-1576.