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Figure S2. TG curve of Si@SiO.
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Figure S3. The TEM images of (a) Si@SiOx-1 h, (b) Si@SiO«-3 h and (c) Si@Si04-5 h. (d)
The cycling properties at 1 A g!' of Si@SiO/PANi-100-1 h, Si@SiO/PANi-100-3 h and
Si@Si104/PANi-100-5 h anodes

The influence of SiOy thickness on cycling performance. In order to display the influence
of the SiOy layer thickness on cycling performance of Si-based anodes, Si@Si104 nanoparticles

with controllable thickness of SiOy layer are synthesized by adjusting the heating time at 600

°C in air. Si@SiO, nanoparticles with heating time ranging from 1 h, 3 h to 5 h are produced
and marked as Si@SiOy-1 h, Si@Si04-3 h and Si@SiO,-5 h, respectively. As shown in Figure
S3, the SiOy layer thicknesses of Si@SiOy-1 h, Si@SiO-3 h and Si@SiO,-5 h are about 2.3
nm, 3 nm and 3.2 nm, respectively. The prepared Si-based anodes are marked as
Si@SiO,/PANi-100-1 h, Si@SiOy/PANi-100-3 h and Si@SiO,/PANi-100-5 h, and the
corresponding cycling performances are shown in Figure S3d. Although the specific capacity
of Si@SiO,/PANi-100-1 h electrode is higher than Si@SiO,/PANi-100-3 h anode in the first
few dozen cycles, it decreases more quickly in the following cycles, hinting worse cycling
performance. Si@SiO,/PANi-100-5 h electrode shows reduced reversible capacity because of
the increased thickness of SiOy layer. Undoubtedly, the optimal heating time is 3 h, and the
produced Si@SiO4/PANi-100-3 h anode in this work shows highest specific capacity and best

cycling stability.
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Figure S4. The EIS spectra of different Si@Si0,/PANi anodes after two cycles.
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Figure S5. Cyclability of the Si@SiO,/PANi-100, Si@SiO,/PVDF, and Si@SiO,/CMC

electrodes at 0.5 (a) and 1 A g'! (b).
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Figure S6. The mechanism of losing contact between conductive additive and Si active

particles using CMC as binder.
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Figure S7. The discharge capacity of pure PANiat 1 A g'!.
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Figure S8. (a) Survey scan, (b) Si 2p, (¢) C 1s, (d) N 1s, (e) F 1s and (f) Li 1s XPS spectra of

Si@Si0,/PANi-100 after 500 cycles.
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Figure S9. (a) FT-IR and (b) Raman spectra of Si@SiO,/PANi-100 after 100 cycles.
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Figure S10. The force-distance curves of peeling test for Si@SiO,/PANi-100 electrode.

The adhesive properties of PANi. As a binder, the adhesive properties of PANi are
investigated by peeling test. A 10-mm-wide and 30-mm-long electrode sample is attached to
3M tape, and the peel strength of the electrode specimens is measured with tensile machine
(Microtester 5948, Instron). By pulling the tape at a constant displacement rate of 100 pm/s, the
applied load is continuously monitored and force-displacement plots are made. As shown in

Figure 6, the initial peeling force is about 0.35 N, which is comparable to conventional PVDF



and CMC binders.-? And binder ability of PANi should be further enhanced via adjusting the

degree of acid doping and cross-linking of PANi, which is ongoing.

Table S1. The O contents for Si@SiO, with different heating time at 600 °C.

samples O content (wt. %)
SiNPs 2.61
Si@SiOx-1 h 6.89
Si@SiO0x-3 h 8.23
Si@SiOx-5 h 8.99

Table S2. The EIS fitting values of different electrodes after 2 cycles

Si@Si104/PANi-50 Si@Si104/PANi-100 Si@S104/PANi-200

Rso1 (0hm) 0.373 0.435 0.473
R (ohm) 34.89 24.20 18.02
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