Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

3D-Printed Stretchable Structural Supercapacitor with Active Stretchability/Flexibility and

Remarkable Volumetric Capacitance

Peng Chang, Hui Mei*, Yuanfu Tan, Yu Zhao, Weizhao Huang, Laifei Cheng

Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

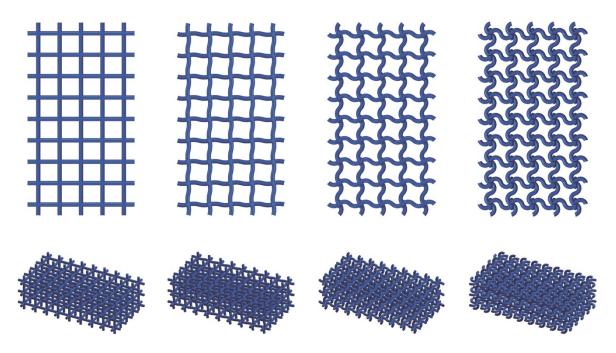
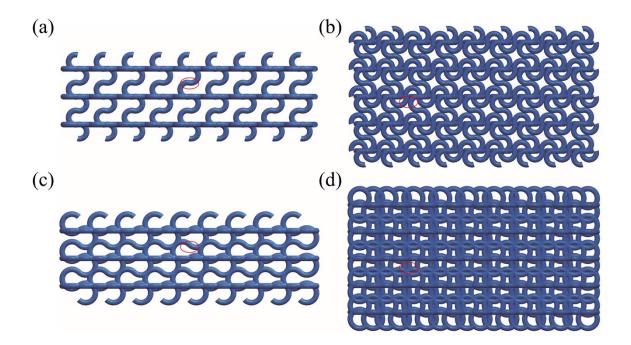
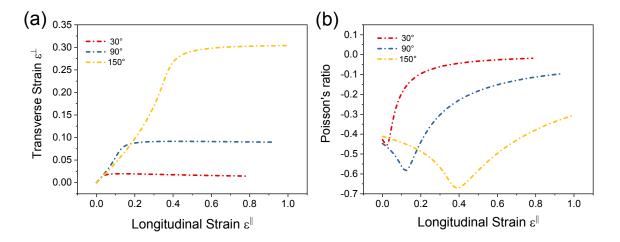




Fig. S1. Negative Poisson's ratio structures with different concave angles (From left to right:

0°, 30°, 90°, and 150°).

Fig. S2. Side view (a, c) and top view (b, d) of Negative Poisson's ratio structures with concave angles of 210° (up) and 270° (down).

Fig. S3. Longitudinal strain vs transverse strain (a) and Poisson's ratio (b) of Negative Poisson's ratio structures with concave angles of 30°, 90° and 150°.

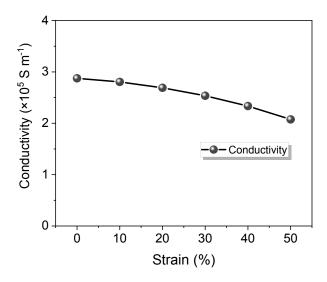


Fig. S4. Conductivity of CoNi₂S₄/NiCo-LDHs/Ni/PL-150° under different tensile strains.

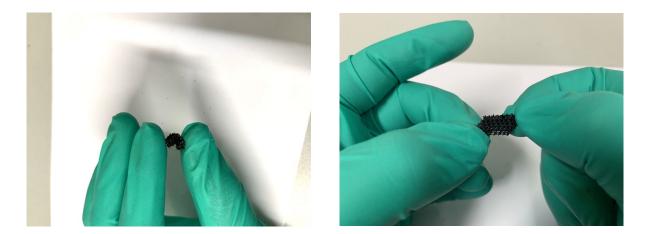


Fig. S5. The photographs of electrodes during the stretching/bending process

To analyze the deformation of the designed structures during the stretching process, we conducted finite element simulation by using the Comsol Multiphasics. We used the viscoelastic model to capture the mechanical behavior of cured photosensitive resin. The generalized Maxwell model was used and the applied strain rate was 0.02 mm s⁻¹. Without considering the thermal effect, the density, modulus and Poisson's ratio of the cured photosensitive resin were 1.3 g cm⁻³, 2580 MPa and 0.35, respectively (at room temperature). The simulation result was shown in Movie. S1.

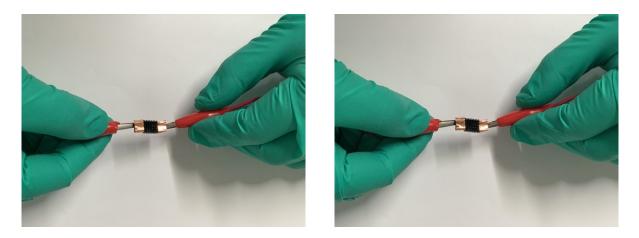


Fig. S6. The photographs of the assembled symmetric supercapacitor.

Table S1 Atomic and mass concentration of the elements in $CoNi_2S_4$ /NiCo-LDHs.

Atomic Concentration %				Mass Concentration %					
Ni 2p	Co 2p	O 1s	C 1s	S 2p	Ni 2p	Co 2p	O 1s	C 1s	S 2p
7.94	9.68	37.71	39.54	5.12	20.45	25.04	26.47	20.83	7.2

Table S2 Comparison of the 3D-printed stretchable structural CoNi ₂ S ₄ /NiCo-LDHs/Ni/PL
nanocomposite electrodes with recently reported 3D electrodes in terms of volumetric
capacitance, rate capability and stability.

Electrode Materials	Volumetric Capacitance	Rate Capability	Stability	Ref.	
PPy-PVA hydrogel	13.06 F cm ⁻³ at 5 mA cm ⁻³	15.8% at 50 mA cm ⁻³	86.3% after 10000 cycles	43	
AC/CNT/rGO	41.3 F cm ⁻³ at	72% at 100 mV s ⁻¹	93.3% after 5000	41	
CoNi ₂ S ₄ /Ni	10 mV s ⁻¹ 3.17 F cm ⁻³ at	68.5% at 50 mA	cycles 77.3% after 2000	24	
PANI/rGO	10 mA cm ⁻³ 12.5 F cm ⁻³ at	cm ⁻³ ~50% at 50 mA	cycles 75% after 10000	37	
Black-	4.2 mA cm ⁻² 41.1 F cm ⁻³ at 5	cm ⁻² 83.7% at 10 mV s ⁻¹	cycles 91.5% after 10000	42	
Phosphorus/CNT ZNCO@Ni(OH)2	mV s ⁻¹ 94.67 F cm ⁻³ at	74% at 15 mA cm ⁻	cycles 90.3% after 10000	42	
NWAs/CNTF	3 mA cm^{-2}	2	cycles	38	
MnO ₂ /MGF/NF	14.28 F cm ⁻³ at 0.64 mA cm ⁻²	66.1% at 10.24 mA cm ⁻²	~100% after 5000 cycles	39	
Cu(OH) ₂ /Cu/Ceramic	8.46 F cm ⁻³ at 5 mA cm ⁻³	68.1% at 1 A cm ⁻³	84.3% after 10000 cycles	17	
rGO/CNT	2 F cm ⁻³ at 0.1 mA cm ⁻²	84% at 1 mA cm ⁻²	90% after 100000 cycles	40	
CoNi ₂ S ₄ /NiCo-	46.2 F cm ⁻³ at 10 mA cm ⁻³	76.8% at 500 mA cm ⁻³	92.2 after 5000	This	
LDHs/Ni/PL	10 mA cm ³	cm ²	cycles	work	

Table S3 Comparison of the 3D-printed stretchable structural $CoNi_2S_4/NiCo-LDHs/Ni/PL$ supercapacitor with state-of-the-art flexible supercapacitors in terms of capacitance retentionafter stretching/bending cycles.

	Capacitance Retention	Capacitance Retention		
Electrode Materials	After Bending Cycles	After Stretching Cycles	Ref.	
PPy-PVA hydrogel	97.9% after 10000 cycles	\	43	
PPy/BPO-CNT	\	95% after 10000 cycles	9	
CNT-MnO ₂	80.8 % after 1800 cycles	\	13	
PANI/RGO	\	~105% of after 500 cycles	10	
Ni ₃ S ₂ -Ni wire	96% after 50 cycles	\	54	
MXene-AgNW-	,	759/ 0 1000 1	0	
MnONW-C60 gel	\ \	75% after 1000 cycles	8	
ZNCO@Ni(OH) ₂	02 (0/ -8	,	20	
NWAs/CNTF	93.6% after 3000 cycles	λ	38	
Graphene/Nanotube	,	020/ 6 100 1	7	
/PANI	\backslash	93% after 100 cycles	7	
SE/rGO/Ag-	070/ 0 4000 1	000/ 0 1000 1	1 4	
NWs/rGO/ SE	97% after 4000 cycles	99% after 1000 cycles	14	
CoNi ₂ S ₄ /NiCo-		00.10/ 0.0000 1	This	
LDHs/Ni/PL	75.2% after 1000 cycles	88.1% after 2000 cycles	work	

Sample	Tensile	Modulus	Energy Absorption	Designed Surface
	Strength	(MPa)	(kJ m ⁻³)	Area (cm ²)
	(MPa)			
0°	1.77 ± 0.18	15.92 ± 1.21	133.62 ± 17.88	6.82
30°	1.86 ± 0.11	10.95 ± 1.64	349.52 ± 29.40	8.74
90°	2.07 ± 0.15	8.56 ± 1.57	505.21 ± 39.55	9.50
150°	2.21 ± 0.23	6.88 ± 0.75	817.73 ± 58.91	11.39

Table S4 Statistical results in tensile strength, modulus, energy absorption, and designedsurface area of four types of electrodes.