Supplementary Information for

Bulk Pt/CsPbBr₃ Schottky Junctions for Charge Boosting in Robust Triboelectric Nanogenerators

Guixiang Xie¹, Xiya Yang^{2,*}, Jialong Duan², Yanyan Duan³, Qunwei Tang^{2,*}

¹ College of Chemistry and Material Science, Longyan University, Longyan 364012, PR China;

² College of Information Science and Technology, Jinan University, Guangzhou 510632, PR China;

³ State Centre for International Cooperation on Designer Low-Carbon and Environmental Material

(SCICDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou

450001, PR China;

E-mail: xiyayang@jnu.edu.cn, tangqunwei@jnu.edu.cn.

Figure S1. Statistical grain size distribution of pristine CsPbBr₃ and Pt/CsPbBr₃ films at different Pt dosages.

Figure S2. Cross-sectional SEM image of the 1% Pt/CsPbBr₃ film.

Figure S3. (a) XRD patterns of the Pt/CsPbBr₃ films at various Pt dosages. **(b)** EDS mapping of the 0.5% Pt/CsPbBr₃ film surface.

Figure S4. (a) High-resolution XPS spectra of Pt/CsPbBr₃ films with various Pt dosages. XPS spectra of (b) Cs 3d and (c) Br 3d.

Figure S5. The comparison of (a) voltage, (b) current and (c) transfer charge outputs performance at

various contact frequencies for pristine $CsPbBr_3$ and 0.5% Pt/CsPbBr_3 TENGs.

Figure S6. (a-g) The impacts of contact frequency on charging behavior of pristine and CsPbBr₃ and 0.5% Pt/CsPbBr₃ TENGs with load capacitances ranging from 1 to 47 μ F. (h) The V_{oc} output performances of perovskite TENGs at various capacitances with charging period of 300 s.