Supporting Information

Fig. S1. X-ray diffraction patterns of cMOF-Co and cMOF-CoRu.

Fig. S2. SEM image of cMOF-Co.

Fig. S3. SEM images of (a) RuCo@NC-500, (c) RuCo@NC-600, (e) RuCo@NC-700, (g) RuCo@NC-800 and (i) Co@NC-600. Particle size distribution diagrams of (b) RuCo@NC-500, (d) RuCo@NC-600, (f) RuCo@NC-700, (h) RuCo@NC-800 and (j) Co@NC-600.

Fig. S4. (a) XPS spectra of Co 2p and (b) Ru 3p for RuCo@NC-T and Co@NC-600. (c) High-resolution XPS spectrum of N 1s for RuCo@NC-T and Co@NC-600.

Fig. S5. Overpotential at -10 and -100 mA cm⁻² for RuCo@NC-T catalysts in 1.0 M KOH solution.

Fig. S6. Nyquist plots of RuCo@NC-T and Co@NC-600 in 1.0 M KOH solution.

Fig. S7. The cyclic voltammetry (CV) measurements tested within the range of 0.1 to 0.2 V vs. RHE at different scan rates $(0.01-0.1 \text{ V s}^{-1})$ for (a) RuCo@NC-600 and (b) Co@NC-600 in 1.0 M KOH solution.

Fig. S8. Linear fitting of the capacitive currents versus CV scan rates for RuCo@NC-T in 1.0 M KOH solution.

Fig. S9. (a) Current-time curve of RuCo@NC-600 and NC samples before and after the introduction of SCN⁻ ions. (b) LSV polarization curves for HER on RuCo@NC-600 in 1.0 M KOH without (solid line) and with (dot line) 10 mM KSCN.

Calculation of the Turnover Efficiency (TOF)

The TOF value of samples can be calculated based on the following equation:

TOF
$$(H_2 \text{ s}^{-1}) = j*S/(2*F*n)$$

Here, j represents the current density during linear sweeping. S represents the surface area of electrode. F is the Faradaic constant (96485.3 C mol⁻¹). 1/2 indicates two electrons are required to form a hydrogen molecule. n represents the number of active sites.^{S1} The number of active sites (n) can be measured according to the formula:^{S2}

n (mol)=metal loading on GCE*metal content/molar mass of metal

All the Ru and Co atoms on the RuCo@NC-T surface are assumed to be the active sites for HER. The metal content was determined by XPS shown in Table. S2. For example, the TOF of RuCo@NC-500 at -0.1 V can be calculated as follows:

 n_{Ru} (mol) = (2.55*10⁻⁴ g cm⁻²*0.196 cm²*23 wt%)/101.07 g mol⁻¹=1.137*10⁻⁷ mol

$$n_{Co} (mol) = (2.55*10^{-4} \text{ g cm}^{-2}*0.196 \text{ cm}^{2}*8 \text{ wt})/58.93 \text{ g mol}^{-1}=6.785*10^{-8} \text{ mol}$$

 $n_{total} (mol) = n_{Ru} (mol) + n_{Co} (mol) = 1.81*10^{-7} mol$

TOF $(H_2 \text{ s}^{-1}) = (0.02775 \text{ A cm}^{-2} * 0.196 \text{ cm}^2)/(2*96485.3 \text{ C mol}^{-1} * 1.81*10^{-7} \text{ mol}) = 0.156 \text{ s}^{-1}$

Fig. S10. The TOF values of samples calculated at different overpotentials (η =20, 40, 60, 80 and 100 mV) in 1.0 M KOH sollution.

Fig. S11. (a) TEM image of RuCo@NC-600 and corresponding particle size distribution diagrams of (b) large and (c) small RuCo alloy NPs after the electrocatalytic HER stability test in 1.0 M KOH solution.

Faradaic efficiency

The Faradaic efficiency (FE) of hydrogen (H₂) can be calculated based on the formula: FE%=n*Z*F/Q*100%. Here, n represents the detected amount of H₂ generated from HER. Z represents the specific number of electrons to form a hydrogen molecule (Z=2). F is the Faradaic constant (96485.3 C mol⁻¹). Q represents the total charge passed through the working electrode.^{S3,S4}

Fig. S12. Chronoamperometric curves of RuCo@NC-600 obtained at -0.045 V vs RHE for hydrogen quantification in 1.0 M KOH.

When 1.2 C of charge (Q) passed through the working electrode, the amount of H₂ (n) measured from gas chromatography (GC) was 6.1 μ mol. Considering the systematic error such as the release of H₂ from the electrochemical cell during the transport to GC, approximately \pm 2% error bar is provided.

 $FE\% = n*Z*F/Q*100\% = (6.1*10^{-6} \text{ mol}*2*96485.3 \text{ C mol}^{-1})/1.2 \text{ C}*100\% = 98.1\% \pm 2\%.$

Fig. S13. Nyquist plots of RuCo@NC-T and Co@NC-600 in (a) $0.5 \text{ M H}_2\text{SO}_4$ and (b) 1.0 M PBS solutions.

Fig. S14. (a, b) The OER polarization curves of samples at a scan rate of 5 mV s⁻¹ in 1.0 M KOH solution.

Fig. S15. X-ray diffraction patterns of the RuCo@NC-600 loaded on carbon paper before and after water splitting test, and blank carbon paper.

Fig. S16. Raman spectra of the RuCo@NC-600 loaded on carbon paper before and after water splitting test.

	Table 51. DET	results of Rueougrie		
Sample	$S_{BET} (m^2 g^{-1})$	S _{Micropore} (m ² g ⁻¹)	V _{pore} (cm ³ g ⁻¹)	V _{Micropore} (cm ³ g ⁻¹)
RuCo@NC-500	186.5	67.1 (36.0 %)	0.631	0.028 (4.4 %)
RuCo@NC-600	165.7	49.0 (29.6 %)	0.528	0.021 (4.0 %)
RuCo@NC-700	130.8	49.1 (37.5 %)	0.391	0.021 (5.4 %)
RuCo@NC-800	102.6	25.0 (24.4 %)	0.307	0.011 (3.6 %)
Co@NC-600	159.3	36.1 (22.7%)	0.238	0.015 (6.3 %)

Table S1. BET results of RuCo@NC-T and Co@NC-600.

Table S2. The Ru and Co content in RuCo@NC-T and Co@NC-600 characterized by XPS spectrum.

Sample	Ru content (at%)	Co content (at%)	Atomic ratio of Ru to Co (at%/at%)
RuCo@NC-500	3.73	2.22	1.68
RuCo@NC-600	3.66	3.34	1.10
RuCo@NC-700	3.64	2.11	1.73
RuCo@NC-800	3.58	3.26	1.10
Co@NC-600	-	4.69	-

 Table S3. Comparison of catalytic performance of RuCo@NC-600 with reported representative state-of-the-art HER electrocatalysts in 1.0 M KOH.

Catalysts	Substrate	Loading amount (mg cm ⁻²)	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References
RuCo@NC-600	Glass carbon	0.255	34	36	This work
0.4-Ru@NG-750	Glass carbon	N.A ^{.[a]}	40	36	ACS Catal. 2019, 9, 9897
Ru ₁ Ni ₁ -NCNFs	Glass carbon	0.612	35	30	<i>Adv. Sci.</i> 2020 , <i>7</i> , 1901833
RuP ₂ @NPC	Glass carbon	1.0	52	69	Angew. Chem. Int. Ed. 2017 , 56, 11559
Ru@CN	Glass carbon	0.273	32	53	Energy Environ. Sci. 2018 , 11, 800

NiRu@N–C	Glass carbon	0.273	32	64	J. Mater. Chem. A 2018, 6, 1376
CoRu@NC-2	Glass carbon	0.273	45	66	Nanotechnology 2018, 29, 225403
$Ru/C_3N_4/C^{[b]}$	Glass carbon	0.204	79	N.A.	J. Am. Chem. Soc. 2016 , 138, 16174
SA-Ru-MoS ₂	Glass carbon	0.285	76	21	Small Methods 2019 , <i>3</i> , 1900653
RuO ₂ /Co ₃ O ₄	Glass carbon	0.285	89	91	<i>RSC Adv.</i> 2017 ,7, 3686
Cu _{2-x} @RuNPS	Glass carbon	0.23	82	48	Small 2017, 13, 1700052
Ru ₁ @Co/NC	Glass carbon	0.163	103	210	Angew. Chem. Int. Ed. 2019 , 58, 11868
Ni-MOF@Pt	Glass carbon	0.2	102	88	Nano Lett. 2019 , 19, 8447
IrCo@NC-500	Glass carbon	0.285	45	80	<i>Adv. Mater.</i> 2018 , <i>30</i> , 1705324
Co ₂ Ni ₁ N	Carbon cloth	N.A.	102.6	60	ACS Appl. Mater. Interfaces 2019, 11, 8018
CoMoS _x	Ni foam	2	89	94	Angew. Chem. Int. Ed. 2020 , 59, 1659
S-CoWP@(S,N)- C	Glass carbon	0.75	67	66	ACS Energy Lett. 2018 , <i>3</i> , 1434

Note: CNF, Carbon nanofibers. [a]: N. A. = Not available. [b]: The electrolyte is 0.1 M KOH.

Table S4. Comparison of catalytic performance of RuCo@NC-600 with reported representativ
state-of-the-art HER electrocatalysts in 0.5 M H ₂ SO ₄ .

Catalysts	Substrate	Loading amount (mg cm ⁻²)	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References
RuCo@NC-600	Glass carbon	0.255	6	26	This work

Ru@C ₂ N	Glass carbon	0.285	22	30	<i>Nature Nanotech.</i> 2017 , <i>12</i> , 441
Ru ₁ Ni ₁ -NCNFs	Glass carbon	0.612	23	29	<i>Adv. Sci.</i> 2020 , <i>7</i> , 1901833
PtRu@RFCS-6h	Glass carbon	0.354	19.7	27.2	Energy Environ. Sci. 2018 , 11, 1232
RuCu NSs/C-250 °C	Glass carbon	N.A. ^[a]	19	26	Angew. Chem. Int. Ed. 2019 , 58, 13983
hcp-Ru@N	Glass carbon	0.28	27.5	37	ACS Catal. 2018, 8, 5714
Mo ₂ C@Ru	Glass carbon	0.275	24.6	58.4	ACS Appl. Mater. Interfaces 2018 , 10, 32171
RuP ₂ @NPC	Glass carbon	1.0	38	38	Angew. Chem. Int. Ed. 2017, 56, 11559
Ru@CN	Glass carbon	0.273	126	47	Energy Environ. Sci. 2018 , 11, 800
NiRu@N–C	Glass carbon	0.273	50	31	J. Mater. Chem. A 2018, 6, 1376
CoRu@NC-2	Glass carbon	0.273	32	47	Nanotechnology 2018 , 29, 225403
Ru@N-g-CN	Glass carbon	0.85	43.7	55	J. Mater. Chem. A 2018 , 6, 13859
Ru@Co-SAs/N-C	Glass carbon	0.285	57	55	Nano Energy 2019 , 59, 472
Ru-MoO ₂	Glass carbon	0.285	55	44	J. Mater. Chem. A 2017, 5, 5475
Ru-HPC	Glass carbon	0.2	61.6	66.8	<i>Nano Energy</i> 2019 , <i>58</i> , 1
C ₃ N ₄ -Ru	Glass carbon	0.153	140	57	J. Mater. Chem. A 2017, 5, 18261
Ru SAs@PN	Carbon paper	1.0	24	38	Angew. Chem. Int. Ed. 2018 , 57, 9495
Ru _{SA} -N-S-Ti ₃ C ₂ T _x	Carbon paper	1.0	76	90	<i>Adv. Mater.</i> 2019 , <i>31</i> , 1903841

Ru/MeOH/THF	Glass carbon	0.352	83	46	<i>Chem. Commun.</i> 2017 , <i>53</i> , 11713
Ni-MOF@Pt	Glass carbon	0.2	43	30	Nano Lett. 2019 , 19, 8447
IrCo@NC-500	Glass carbon	0.285	24	23	<i>Adv. Mater.</i> 2018 , <i>30</i> , 1705324
PtCoFe@CN	Glass carbon	0.285	45	32	ACS Appl. Mater. Interfaces 2017, 9, 3596
CoPd@NC	Glass carbon	0.285	80	31	ACS Appl. Mater. Interfaces 2016, 8, 13378
Co ₂ Ni ₁ N	Carbon cloth	N.A.	92	55.3	ACS Appl. Mater. Interfaces 2019 , 11, 8018
CuCo@NC	Glass carbon	0.182	145	79	<i>Adv. Energy Mater.</i> 2017 , 7, 1700193
S-CoWP@(S,N)- C	Glass carbon	0.75	35	35	ACS Energy Lett. 2018, 3, 1434

Note: CNF, Carbon nanofibers; RFCS, Resorcinol-formaldehyde carbon spheres; NS, Nanosheet; hcp, Hexagonal-closed-packed; HPC, Hierarchically porous carbon; HPN, Amorphous phosphorus nitride imide nanotubes. [a]: N. A. = Not available.

state-of-the-art HE	R electroc	atalysts in 1	.0 M PBS.		
Catalysts	Substrate	Loading amount (mg cm ⁻²)	Overpotential at 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References

Table S5. Cor	nparison of	f catalytic j	performance	of RuCo@NC-60	00 with repo	rted represe	ntative
state-of-the-art	HER elect	trocatalysts	in 1.0 M PB	S.			

		$(mg cm^{-2})$	(mV)	, ,	
RuCo@NC-600	Glass carbon	0.255	60	38	This work
Ru@Co-SAs/N-C	Glass carbon	0.285	55	82	Nano Energy 2019 , 59, 472
RuP ₂ @NPC	Glass carbon	1.0	57	87	Angew. Chem. Int. Ed. 2017 , 56, 11559
Ru/MeOH/THF ^[a]	Glass carbon	0.352	83	80	Chem. Commun. 2017 , 53, 11713

Ru@CN ^[a]	Glass carbon	0.273	100	N.A. ^[b]	Energy Environ. Sci. 2018 , 11, 800
Ru@N-g-CN ^[a]	Glass carbon	0.85	144	133	J. Mater. Chem. A 2018, 6, 13859
D-RuO ₂ -CNx	Glass carbon	0.28	135	135	ACS Appl. Mater. Interfaces 2016, 8, 28678
$Ni_{0.33}Co_{0.67}S_2$ nanowire	Glass carbon	0.3	72	67.8	<i>Adv. Energy Mater.</i> 2015 , <i>5</i> , 1402031
Co ₂ Ni ₁ N	Carbon cloth	N.A.	152.8	90.3	ACS Appl. Mater. Interfaces 2019 , 11, 8018
NiRu@N–C	Glass carbon	0.273	482	N.A.	J. Mater. Chem. A 2018, 6, 1376
CoRu@NC-2	Glass carbon	0.273	425	N.A.	Nanotechnology 2018 , <i>29</i> , 225403

Note: [a]: The electrolyte is 0.1 M PBS. [b]: N. A. = Not available.

Reference

S1 T. Feng, G. Yu, S. Tao, S. Zhu, R. Ku, R. Zhang, Q. Zeng, M. Yang, Y. Chen, W. Chen,
 W. Chen, B. Yang, *J. Mater. Chem. A*, 2020, 8, 9638-9645.

S2 H. Wang, C. Gao, R. Li, Z. Peng, J. Yang, J. Gao, Y. Yang, S. Li, B. Li, Z. Liu, *ACS Sustainable Chem. Eng.*, 2019, 7, 18744-18752.

S3 S. Dutta, H. Han, M. Je, H. Choi, J. Kwon, K. Park, A. Indra, K. M. Kim, U. Paik, T. Song, *Nano Energy*, 2020, 67, 104245.

S4 Z. Li, J. Fu, Y. Feng, C. Dong, H. Liu, X. Du, Nat. Catal., 2019, 2, 1107-1114.