Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Towards the Understanding of Acetonitrile Suppressing Salt

Precipitation Mechanism in Water-in-Salt Electrolyte for Low-

temperature Supercapacitor

Yinglun Sun^{a,b}, Yue Wang^c, Lingyang Liu^{a,b}, Bao Liu ^{a,b}, Qingnuan Zhang^a, Dandan Wu^d, Hongzhang Zhang^e and Xingbin Yan^{a,b,f*}

^a Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.

^d Department of Physics, School of Science, Lanzhou University of Technology, Lanzhou, 730000, China.

^e Dalian National Laboratory for Clean Energy, Dalian, 116023, China.

^f International Academy of Optoelectronics at Zhaoqing, South China Normal University, Zhaoqing, 52600, China.

* Corresponding author. E-mail address: xbyan@licp.cas.cn

solution	Number	Number	Number
	(ClO ₄ -)	(H ₂ O)	(ACN)
(NaClO ₄) _{1.7} /(H ₂ O) _{5.5}	2.77	3.24	0
(NaClO ₄) _{1.7} /(H ₂ O) _{4.7} (ACN) ₂	1.865	2.951	1.15
(NaClO ₄) _{1.7} /(H ₂ O) _{4.7} (ACN) ₃	1.522	2.866	1.568
(NaClO ₄) _{1.7} /(H ₂ O) _{4.7} (ACN) ₄	1.268	2.764	1.913

Table S1. The coordination numbers for Na-O^{\times}, Na-O=, and Na-N^{\times} of NaClO₄-based solutions with different H₂O/ACN molar ratio.

Materials	Electrolyte	Potential	Lowest	Specific	Specific	C_{LOT}/C_{RT}	Rate capability	cyclic	Ref.
		window	operating	capacitance	capacitance		(LOT)	stability	
			temperature (LOT)	(RT)	(LOT)			(LOT)	
activated carbon	SA-g-DA/KCl	0.8 V	-10 °C	97 F g ⁻¹	79.5 F g ⁻¹	81.95%	-	99.37%	1
	hydrogel electrolyte			(1.0 A g^{-1})	(1.0 A g^{-1})			after 1350	
	(3 M KCl)			single electrode	single electrode			cycles	
PEDOTS-	LiCl-PVA	1.5 V	-60 °C	179.8 mF cm ⁻²	78.8 mF cm^{-2}	43.82%	22.2%	97.2%	2
RuO2@PEDOTS	gel electrolyte			(50 mV s^{-1})	(50 mV s^{-1})		(from 5 to 100	after 5000	
	(3.5 M LiCl)						mV S ⁻¹)	cycles	
activated carbon	NaClO ₄ aqueous	1.2 V	-30 °C	158 F g^{-1}	-	-		-	3
	solution (5 M)			(5 mV s^{-1})					
				single electrode					
commercial	[BMIm]Cl/H ₂ O	2.5 V	-32°C	480 F g ⁻¹	97 F g ⁻¹	20.20%	29.9%	-	4
graphene	electrolyte			(20 mV s ⁻¹)	(20 mV s ⁻¹)		(from 20 to 400		
nanoplatelets	with 0.1m 4hT			single electrode	single electrode		mV s ⁻¹)		
	(20 m)								
porous carbon	gel electrolyte with 5	2.5 V	-54°C	241.3 F g ⁻¹	156.1 F g ⁻¹	64.69%	-	-	5
	M LiTFSI solution			single electrode	single electrode				
activated carbon	cholinium chloride	1.5 V	-40°C	126 F g ⁻¹	106 F g ⁻¹	82.13%	-	-	6
	aqueous solutions			single electrode	single electrode				
	(5 m)								
$Co(OH)_2$ and	NaClO ₄ (9 M) and	1.4 V	-30 °C	-	-	-	-	96.5%	7
activated carbon	NaOH (1 M)							after 500	
								cycles	
graphene	Li ₂ SO ₄ /ethylene	1.0 V	-20°C	91 F g^{-1}	$74 \ F \ g^{-1}$	81.32%	25.67%	-	8
	glycol/water			(1 mA cm ⁻²)	(1 mA cm ⁻²)		(from 1 to 10		
	electrolyte			single electrode	single electrode		mA cm ⁻²)		
activated carbon	Li ₂ SO ₄ in	1.6 V	-40°C	$87 \ {\rm F} \ {\rm g}^{-1}$	$72 \ F \ g^{-1}$	82.76%	-	-	9
	water/methanol			(0.2 A g^{-1})	(0.2 A g^{-1})				
	(7:3 v:v)			single electrode	single electrode				

 Table S2. The comparison of low-temperature electrochemical performance for aqueous supercapacitors.

carbon nanotubes	CaCl ₂ in FA/H ₂ O	1.0 V	-60°C	107.6 F g ⁻¹	72.7 F g ⁻¹	67.57%	-	-	10
	(1:1 v:v)			(100 mV s^{-1})	(100 mV s^{-1})				
				single electrode	single electrode				
δ -MnO ₂ /activated	5 M NaClO ₄	1.8 V	-35°C	47.4 F g^{-1}	$42 \ F \ g^{-1}$	88.60 %	-	-	11
carbon	in the methanol/water (1:5.2 m:m)			(0.25 A g^{-1})	(0.25 A g^{-1})				
activated carbon	5m LiTFSI-based	2.2 V	-30°C	$27 \ \text{F} \ \text{g}^{-1}$	$22 \mathrm{~F~g^{-1}}$	81.48%	40.91%	-	12
	hybrid electrolyte			(1 A g^{-1})	(1 A g^{-1})		(from 1 to 10 A		
				device	device		g-1)		
carbon nanotube	PVA/LiCl/H ₂ O/EG	1.0 V	-40°C	$\sim 16 \text{ mF cm}^{-2}$	$\sim 11.3 \text{ mF cm}^{-2}$	70.60%	-	88.3%	13
paper	gel electrolyte			device	device			after 5000	
								cycle at - 20 °C	
NiO and	PVA/KOH/H ₂ O gel	1.6 V	-20°C	61.5 F g^{-1}	41.4 F g^{-1}	67.32%	60%	72% after	14
activated carbon	electrolyte			(0.1 A g^{-1})	(0.1 A g^{-1})		(from 0.1 to 1 A	800 cycles	
				device	device		g-1)		
BC-RGO	PA/KOH/H ₂ O gel	1.0 V	-30°C	175 F g ⁻¹	75 F g ⁻¹	42.86%	-		15
	electrolyte			(1 A g^{-1})	(1 A g^{-1})				
				single electrode	single electrode				
NiO	4 M KOH containing	0.6 V	-20°C	-	128 F g ⁻¹	-	80%	96.4%	16
	$Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$				(2 A g^{-1})		(from 0.5 to 2 A	after 1000	
	couple				single electrode		g-1)	cycles	
activated carbon	PPD in 38% H ₂ SO ₄ solution	1.5 V	-18°C	-	-	-	-	-	17
NiO/ activated	6 M KOH	1.5 V	-18°C	-	28.3 F g^{-1}	-	74%	94% after	18
carbon, activated					(2.5 A g^{-1})		(from 1 to 2.5A	1000	
carbon					device		g ⁻¹)	cycles	
CoNiFe ternary	6 M KOH	0.45 V	-20°C	-	985 F g ⁻¹	-	-	76.9%	19
hydroxides					(1.5 A g^{-1})			after 500	

	chech ory te			uevice	uerice		, s <i>j</i>	cycles)	
	based hybrid electrolyte			(20 mV s ⁻¹) device	(20 mV s ⁻¹) device		(from 10 to 100) mV s ⁻¹	120 h (~7000	work
activated carbon	8.18 m NaClO ₄ -	2.3 V	-50 °C	31.8 F g⁻¹	27.5 F g ⁻¹	86.5%	78.2%	91% after	This
	electrolyte			single electrode	single electrode				
	/DSMO/H ₂ O gel			(1 A g^{-1})	(1 A g^{-1})				
graphene	$2M H_2 SO_4$	0.8 V	-50°C	161F g ⁻¹	$161F g^{-1}$	~50%	-	-	24
	-			device	device		g-1)		
	electrolyte			(0.5 A g^{-1})	(0.5 A g-1)		(from 0.5 to 2A		
activated carbon	20 m LiTFSI	2.4 V	-20°C	50 F g^{-1}	26 F g ⁻¹	52%	30.8%	-	23
				single electrode	single electrode			20°C	
	cicettoryte			(IAG)	(IAg)			cycles at -	
activated carbon	electrolyte	1.0 V	-40 C	$(1 \Delta \sigma^{-1})$	$(1 \Delta q^{-1})$	15.1570		after 10000	22
activated carbon	crystal-type NaAc gel	1 0 V	-40°C	$175.9 \text{ F} \text{ s}^{-1}$	$129.7 \text{ F} \text{ s}^{-1}$	73 73%	_	75 3%	22
2-pynameunor	cicettoryte			(5 m v s)	(J III V S)				
2 pyridinathial	electrolyte	1.0 V	-40 C	(5 mV s^{-1})	(5 mV s^{-1})	5570	-	-	21
activated carbon/	H SO /H O/EC gal	1 0 V	40°C	200 E/a		250/	mv s ²)	cycles	21
					(2 mV s^{-1})		$(110 \text{ mV} \text{ s}^{-1})$	5000	
TIC@PPy/PVA	0 IVI INAINO ₃	1.4 V	-18 L	-	330 Fg^{-1}	-	/0%	~/0% alter	20

Table S3. The temperature dependence of specific capacitance, rate capability, R_i , R_{ct} , and relaxation time constant for supercapacitor based on YP-50F active material and $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution.

Temperature (°C)	20	0	-20	-40	-50
Specific Capacitance (F g ⁻¹)	31.8	30.9	30.2	28.8	27.5
Rate Capability (%)	92.1	93.1	92.2	85.4	78.2
$R_i(\Omega)$	1.03	1.32	1.98	5.68	11.5
$R_{ct}(\Omega)$	1.55	1.90	2.86	6.47	12.3
$ au_{0}(s)$	0.83	1.21	1.78	4.65	10.0

Figure S1. (a) The CV curves and (b) GCD curves of the supercapacitor based on 17 m NaClO₄ electrolyte at various temperatures.

As shown in Fig. S1a, when the operating temperature drops to -40 °C, the current response in the CV curve is almost zero, indicating the failure of the device. The highly concentrated salt in the WIS electrolyte inevitably precipitates on surface of electrode material and separator at low temperatures, which blocks ions transfer, resulting in the failure of the supercapacitor ultimately at -40 °C.

Figure S2. (a) The solubility of $NaClO_4$ in ethylene glycol (EG), methyl alcohol acetate acetonitrile (Me), methyl acetate (MA), ethyl (EA), (ACN), dimethylformamide (DMF), acetone (ACE) and tetrahydrofuran (THF). The mass of each organic solvent is 10 g. (b) The CV curves of supercapacitor based on active carbon and $(NaClO_4)_{1,7}/(H_2O)_{4,7}(Me)_3$ solution at various temperatures. (c) The CV curves of supercapacitor based on active carbon and (NaClO₄)_{1.7}/(H₂O)_{4.7}(EG)₃ solution at various temperatures. (d) The CV curves of supercapacitor based on active carbon and $(NaClO_4)_{1.7}/(H_2O)_{4.7}(MA)_3$ solution at various temperatures.

Besides previously reported ACN, other organic solvents, such as EG, Me, MA, EA, DMF, ACE and THF, also can dissolve NaClO₄ easily. We speculate these organic solvents would also have similar effect as ACN on suppressing salt precipitation in highly concentrated solution. We choose Me, EG and MA as co-solvent to prepare the hybrid electrolyte in the form of $(NaClO_4)_{1.7}/(H_2O)_{4.7}$ (co-solvent)₃. The as-prepared electrolytes using Me, EG and MA as co-solvent still exhibit excellent electrochemical performance at subzero temperature.

Figure S3. Magnified view of the regions near (a) cathodic and (b) anodic limits for NaClO₄-based solutions with different H₂O/ACN molar ratio. In this system, a value of 0.2 mA cm⁻² was defined as the threshold for electrolyte decomposition.

Figure S4. (a) Viscosities and (b) ionic conductivities of NaClO₄-based solutions with different H_2O/ACN molar ratio at room temperature.

Figure S5. The MD simulation snapshots for (a) $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_2$ solution, and (b) $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_4$ solution.

Figure S6. The RDF for (a) Na-N^{*}, and (b) Na-O= of NaClO₄-based solutions with different H₂O/ACN molar ratio. N^{*} stands for N atom in ACN, and O= stands for O atom in H₂O.

Figure S7. The binding energies of H₂O-H₂O, H₂O-NaClO₄, ACN-ACN, and ACN-NaClO₄.

Figure S8. (a)The viscosities and (b)ion conductivities of the three hybrid solutions at various temperatures. (c)The ion conductivity of $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution at various temperatures.

The measured ionic conductivity of $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution was fitted by the Vogel–Tammann–Fulcher (VTF) empirical equation. The equation is described as follow.^{25, 26}

$$\sigma(T) = AT^{-1/2} \exp(-E_a/R(T - T_0))$$
(1)

Where $\sigma(T)$ is the ionic conductivity; *A* is the pre-exponential factor; E_a is the activation energy; *R* is the ideal gas constant, and T_0 is the ideal glass transition temperature.

Figure S9. The characterization of commercial active carbon (YP-50F). ((a) The scanning electron microscope image of YP-50F. (b) The Raman spectrum of YP-50F. (c) The nitrogen adsorption-desorption isotherms of YP-50F. (d) The pore-size distribution of YP-50F.

Figure S10. The electrochemical performance of supercapacitor based on active carbon and $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution at 20 °C. (a) The CV curves of supercapacitor at different scan rates. (b) The GCD curves of supercapacitor at different current densities. (c) The cycling stability of supercapacitor at the current density of 2 A g⁻¹.

Figure S11. CV curves at various scan rates (a) and GCD curves at various current densities (b) for supercapacitor based on active carbon and $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution measured at -20 °C.

Figure S12. CV curves at various scan rates (a) and GCD curves at various current densities (b) for supercapacitor based on active carbon and $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution measured at -40 °C.

Figure S13. CV curves at various scan rates (a) and GCD curves at various current densities (b) for supercapacitor based on active carbon and $(NaClO_4)_{1.7}/(H_2O)_{4.7}(ACN)_3$ solution measured at -50 °C.

Figure S14. (a) The nitrogen adsorption-desorption isotherms of salt-templated carbon material (STC). (b) The pore-size distribution of STC. (c) The CV curves of supercapacitor based on STC at 20 mV s⁻¹ at various temperatures. (d) The GCD curves of supercapacitor based on STC at 0.5A g⁻¹ at various temperatures (e) The electrochemical impedance spectroscopy at various temperatures. (f) The internal resistance (R_i) and charge transfer resistance (R_{ct}) at various temperatures.

Reference

1. F. Tao, L. Qin, Z. Wang and Q. Pan, ACS Appl. Mater. Interfaces, 2017, 9, 15541-15548.

2. Z. Wang, J. Cheng, J. Zhou, J. Zhang, H. Huang, J. Yang, Y. Li and B. Wang, *Nano Energy*, 2018, **50**, 106-117.

- 3. J. Yin, C. Zheng, L. Qi and H. Wang, J. Power Sources, 2011, 196, 4080-4087.
- 4. A. Tatlisu, Z. Huang and R. Chen, ChemSusChem, 2018, 11, 3899-3904.

5. J. Zhou, D. Wu, C. Wu, G. Wei, J. Wei, Z. Tai, S. Xi, S. Shen, Q. Wang and Y. Chen, *J. Mater. Chem. A*, 2019, **7**, 19753-19760.

- 6. Q. Abbas and F. Béguin, ChemSusChem, 2018, 11, 975-984.
- 7. T. Deng, W. Zhang, H. Zhang and W. Zheng, *Energy Technol.*, 2018, 6, 605-612.
- 8. R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang and Y. Lei, *Nano Energy*, 2014, **8**, 231-237.
- 9. Q. Abbas and F. Béguin, J. Power Sources, 2016, 318, 235-241.
- 10. Y. Gao, Z. Qin, L. Guan, X. Wang and G. Z. Chen, *Chem. Commun.*, 2015, **51**, 10819-10822.
- 11. L. Chen, H. Li, H. Yoshitake, L. Qi, N. Gu and H. Wang, *Electrochim. Acta*, 2015, 157, 333-344.
- Q. Dou, S. Lei, D.-W. Wang, Q. Zhang, D. Xiao, H. Guo, A. Wang, H. Yang, Y. Li, S. Shi and X. Yan, *Energy Environ. Sci.*, 2018, **11**, 3212-3219.
- 13. Q. Rong, W. Lei, J. Huang and M. Liu, Adv. Energy Mater., 2018, 8, 1801967.
- 14. C. Yuan, X. Zhang, Q. Wu and B. Gao, Solid State Ionics, 2006, 177, 1237-1242.
- 15. X. Li, L. Liu, X. Wang, Y. S. Ok, J. A. W. Elliott, S. X. Chang and H. J. Chung, *Sci. Rep.*, 2017, **7**, 1685.
- 16. L. Su, L. Gong and Y. Zhao, Phys. Chem. Chem. Phys., 2014, 16, 681-684.
- 17. L. Su, L. Gong, C. Ma, X. Wang and Z. Sun, ChemElectroChem, 2017, 4, 46-48.
- 18. L. Su, L. Gong, X. Wang and H. Pan, Int. J. Energy Res., 2016, 40, 763-769.
- 19. L. Su, Z. Song, J. Guo and J. Li, ChemistrySelect, 2017, 2, 2665-2669.
- 20. Y.-T. Weng, H.-A. Pan, N.-L. Wu and G. Z. Chen, J. Power Sources, 2015, 274,

1118-1125.

21. Y. Shang, J. Wei, C. Wu and Q. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 42959-42966.

- 22. J. Wei, G. Wei, Y. Shang, J. Zhou, C. Wu and Q. Wang, *Adv. Mater.*, 2019, **31**, e1900248.
- 23. S.-W. Xu, M.-C. Zhang, G.-Q. Zhang, J.-H. Liu, X.-Z. Liu, X. Zhang, D.-D.
- Zhao, C.-L. Xu and Y.-Q. Zhao, J. Power Sources, 2019, 441, 227220.
- 24. C. Lu and X. Chen, Nano Lett., 2020, 20, 1907-1914.
- 25. F. Croce, M. L. Focarete, J. Hassoun, I. Meschini and B. Scrosati, *Energy Environ. Sci.*, 2011, 4, 921-927.
- 26. X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen and C. Wang, *Nat. Energy*, 2019, 4, 882-890.