Supporting Information

Identifying dual functions of rGO in a BiVO₄/rGO/NiFe-layered double hydroxide photoanode for efficient photoelectrochemical water splitting

Hua Chen,^{ab†} Songcan Wang,^{bc†} Jianzhong Wu,^a Xiacong Zhang,^d Jia Zhang,^a Miaoqiang Lyu,^b Bin Luo,^b Guangren Qian,^{*a} and Lianzhou Wang^{*b}

^a School of Environmental and Chemical Engineering, Shanghai University, No. 333 Nanchen Rd., Shanghai 200444, P. R. China.

^b Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.

^c Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.

^d Department of Polymer Materials, College of Materials Science and Engineering, Shanghai University, No. 333 Nanchen Rd., Shanghai 200444, P. R. China.

* Corresponding authors: grqian@shu.edu.cn (G. Qian); https://www.ukang.edu.au (L. Wang)

[†] These authors contributed equally to this work.

Fig. S1 (A) High resolution SEM image of BiVO₄/rGO. TEM images of (B) rGO and (C) BiVO₄/rGO.

Fig. S2 SEM cross-section of (A) BiVO₄, and (B) BiVO₄/rGO/NiFe-LDH.

Fig. S3 XRD pattern of BiVO₄/rGO/NiFe-LDH.

Fig. S4 LSV curves of BiVO₄/rGO/NiFe-LDH with various LDH deposition time.

Fig. S5 LSV curves BiVO₄/NiFe-LDH/rGO.

Fig. S6 LSV curves of the as-prepared photoanodes in 1 M KHPO₄ electrolyte (pH=7).

Fig. S7 LSV curves of the as-prepared photoanodes in the presence of 0.2 M Na₂SO₃.

Fig. S8 Stability measurement of $BiVO_4/rGO/NiFe-LDH$ under consecutive AM 1.5 G illumination at 1.23 V vs. RHE.

Fig. S9 O_2 evolution of BiVO₄/rGO/NiFe-LDH under consecutive AM 1.5 G illumination at 1.23 V vs. RHE.

Fig. S10 PL spectra of BiVO₄, BiVO₄/rGO, BiVO₄/NiFe-LDH, and BiVO₄/rGO/NiFe-LDH.

Fig. S11 (A) UV-Vis diffuse reflectance spectra, and (B) Corresponding plot of transformed Kubelka-Munk function versus the energy of the light of NiFe-LDH.

Fig. S12 Mott-Schottky plots of NiFe-LDH, pristine BiVO₄ and BiVO₄/rGO/NiFe-LDH measured in 1 kHz at room temperature in the dark.

Fig. S13 Band alignment and mechanism of charge separation for the BiVO₄/rGO/NiFe-LDH photoanode.

Fig. S14 LSV curves of (A) Pristine $BiVO_4$ and (B) $BiVO_4/rGO$ with various LDH deposition potential (time for 100 s).

Samples	R_s/Ω	R_{ct}/Ω
BiVO ₄	26.2 ± 0.2	540.0 ± 4.5
BiVO ₄ /NiFe-LDH	21.0 ± 0.1	403.0 ± 3.5
BiVO ₄ /rGO/NiFe-LDH	28.0 ± 0.1	248.0 ± 2.4

Table S1 The fitted results of EIS data using the equivalent circuit in Fig. 5D.

_