Supporting Information

High-efficient Overall Water Splitting Over Porous Interconnected Network

by Nickel Cobalt Oxysulfide Interfacial Assembled Cu@Cu \mathbf{C} S Nanowires

Duy Thanh Tran, ${ }^{a}$ Van Hien Hoa, ${ }^{a}$ Huu Tuan Le, ${ }^{a}$ Nam Hoon Kim, ${ }^{a}$ Joong Hee Lee ${ }^{a, b *}$
${ }^{\text {a }}$ Advanced Materials Institute for BIN Convergence Technology (BK21 Plus Global Program), Department of BIN Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
${ }^{\mathrm{b}}$ Carbon Composite Research Center, Department of Polymer-Nanoscience and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
*Corresponding authors: E-Mail: jh1@jbnu.ac.kr (Joong Hee Lee)

$$
\text { Fax: +82 832702341; Tel: +82 } 832702342
$$

Preparation of $\mathbf{C u} @ \mathrm{Cu}_{2} \mathbf{S}$ NWs network

For preparing $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S}$ NWs, a working electrode of the Cu NWs on 3DF ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$) was dippded in an an aqueous solution (50 mL) containing 0.75 M of thiourea, while $\mathrm{Ag} / \mathrm{AgCl}$ and graphite rod were used as reference and counter electrode, respectively. An electrodeposition process was conducted at an applied potential of $-1.0 \mathrm{~V}(v s . \mathrm{Ag} / \mathrm{AgCl})$ for 100 s . After that, the sample was cleaned with water three times and was dried at $60^{\circ} \mathrm{C}$ in a vacuum oven.

Preparation of $\mathbf{C u @ C u} \mathbf{L}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathbf{x}} \mathrm{NWs}\left(\right.$ or $\mathbf{C u} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathbf{x}}$ NWs) network

A piece of the Cu NWs on 3DF $(1 \mathrm{~cm} \times 1 \mathrm{~cm})$, used as the working electrode, was dippded in an electrochemical cell containing 50 mL of water dispersed with 10 mM of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ (or
$\left.\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}\right)$ and 0.75 M of thiourea. $\mathrm{Ag} / \mathrm{AgCl}$ and graphite rod were used as reference and counter electrode, respectively. An electrodeposition process was then carried out at an applied potential of $-1.0 \mathrm{~V}(v s . \mathrm{Ag} / \mathrm{AgCl})$ for 100 s . Subsequently, the obtained sample of $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}$ (or $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}$) on 3DF was cleaned with water three times followed by drying at $60{ }^{\circ} \mathrm{C}$ in a vacuum oven before it was investigated physicochemical and electrochemical properties.

Preparation of $\mathbf{C u @ N i C o O} \mathbf{O}_{2}$ NWs network

For preparing $\mathrm{Cu} @ \mathrm{NiCoO}_{2} \mathrm{NWs}$ on 3DF, a working electrode based on a piece of the Cu NWs on 3DF ($1 \mathrm{~cm} \times 1 \mathrm{~cm}$) was immersed in a 50 mL of aqueous solution containing 10 mM of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ and $10 \mathrm{mM} \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$. An electrodeposition step was then conducted at an applied potential of $-1.0 \mathrm{~V}(\mathrm{vs} . \mathrm{Ag} / \mathrm{AgCl})$ for 100 s . After the reaction finished, the obtained sample of $\mathrm{Cu} @ \mathrm{NiCoO}_{2} \mathrm{NWs}$ on 3DF was washed by water three times and dried at $60^{\circ} \mathrm{C}$ in a vacuum oven.

Turnover Frequency Calculations

Firstly, the ECSA was calculated according to $\mathrm{C}_{\mathrm{d} 1}$ value of materials [1]. In this research, metal foam was applied as substrate to support catalyst, thus its $\mathrm{C}_{\mathrm{d} 1}$ is much higher than that of a flat substrate having $\mathrm{C}_{\mathrm{d} 1}$ between $0.02-0.06 \mathrm{mF} \mathrm{cm}^{-2}$. Therefore, the ECSA of materials could be assesses by following equation [2]:

$$
A_{E C S A}=\frac{C_{d l(\text { catalyst })}}{C_{\text {dl(foam substrate })}}
$$

where $C_{\mathrm{dl} \text { (foam substrate) }}$ is around $1.7 \mathrm{mF} \mathrm{cm}^{-2}$ measured in 1.0 M KOH medium [2].
Therefore, $\mathrm{A}_{\mathrm{ECSA}}$ of the Cu NWs ($1.9 \mathrm{mF} \mathrm{cm}{ }^{-2}$), $\mathrm{Cu} @ \mathrm{NiCoO}_{2}$ NWs $\left(3.3 \mathrm{mF} \mathrm{cm}^{-2}\right)$, $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}\left(3.7 \mathrm{mF} \mathrm{cm}^{-2}\right), \mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs $\left(2.9 \mathrm{mF} \mathrm{cm}^{-2}\right)$, and
$\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}\left(8.6 \mathrm{mF} \mathrm{cm}{ }^{-2}\right)$ could be estimated to be 1.118, 1.941, 2.176, 1.706, and $5.059 \mathrm{~cm}^{2}$.

We applied the following formula for evaluating the per site turnover frequency (TOF) [3,4]:

TOF $=\frac{\text { number of total hydrogen turn over } / \mathrm{cm}^{2} \text { of geometric area }}{\text { number of active sites } / \mathrm{cm}^{2} \text { of geometric area }}$
The total number of hydrogen turn overs was calculated from the current density according to:
no. of $\mathrm{H}_{2}=\left(j \frac{\mathrm{~mA}}{\mathrm{~cm}^{2}}\right)\left(\frac{1 \mathrm{Cs}^{-1}}{1000 \mathrm{~mA}}\right)\left(\frac{1 \text { mol } e^{-}}{96485.3 \mathrm{C}}\right)\left(\frac{1 \mathrm{~mol} \mathrm{H}_{2}}{2 \mathrm{~mole}-}\right)\left(\frac{6.023 \times 10^{23} \mathrm{H}_{2} \text { molecules }}{1 \mathrm{~mol} \mathrm{H}_{2}}\right)=3.12 \times 10^{15} \frac{\mathrm{H}_{2} / \mathrm{s}}{\mathrm{cm}^{2}} \mathrm{per} \frac{\mathrm{mA}}{\mathrm{cm}^{2}}$
The number of active sites was evaluated from the roughness factor together with the unit cell, as seen in the case of $\mathrm{Ni}_{5} \mathrm{P}_{4}$ and NiMoP_{2}.[3] A same method was applied to evaluate TOF for our synthesized materials.

$$
\text { Active sites }{ }_{C u}=\left(\frac{4 \text { atom } / \text { unit cell }}{47.272 \AA^{3} / \text { unit cell }}\right)^{\frac{2}{3}}=1.927 \times 10^{15} \times \text { atoms cm real }
$$

Active sites $\mathrm{NiCoO}_{2}=\left(\frac{8 \text { atom } / \text { unit cell }}{74.314 \AA^{3} / \text { unit cell }}\right)^{\frac{2}{3}}=2.263 \times 10^{15} \times$ atoms cm $_{\text {real }}^{-2}$

Active sites $\mathrm{NiCOO}_{2-x} S_{x}=\left(\frac{8 \text { atom } / \text { unit cell }}{74.314 \AA^{3} / \text { unit cell }}\right)^{\frac{2}{3}}=2.263 \times 10^{15} \times$ atoms cm $_{\text {real }}^{-2}$
Finally, TOF was can be calculated by an implied equation as following:

$$
\text { TOF }=\frac{\left(3.12 \times 10^{15} \frac{\mathrm{H}_{2} / \mathrm{s}}{\mathrm{~cm}^{2}} \operatorname{per} \frac{\mathrm{~mA}}{\mathrm{~cm}^{2}}\right)|j|}{\text { Active sites } \times A_{E C S A}}
$$

Figure S1. (a-c) SEM images at different magnifications of $\mathrm{Cu}(\mathrm{OH})_{2}$ nanoneedles on 3DF.

Figure S2. (a-c) SEM images and (d) EDAX spectrum of $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S}^{(}$) $\mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs on 3DF.

Figure S3. (a-b) SEM images and (c) EDAX spectrum of $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs on 3DF.

Figure S4. (a-c) SEM images and (d) EDAX spectrum of $\mathrm{Cu} @ \mathrm{NiCoO}_{2}$ NWs on 3DF.

Figure S5. The crystalline structures of $\mathrm{Cu} @ \mathrm{NiCoO}_{2} \mathrm{NWs}, \mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}$, and $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs.

Figure S6. $\mathrm{Cu}(\mathrm{LMM})$ Auger spectrum of the $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs material.

Figure S7. (a) Survey XPS spectra of $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}$ and $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs; (b) Comparison of Ni2p spectra between $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-x} \mathrm{~S}_{\mathrm{x}}$ NWs and $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs; (c) Comparison of Co2p spectra between Cu^{C} ($\mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-}$ ${ }_{x} \mathrm{~S}_{\mathrm{x}}$ NWs and $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs; (d) Comparison of O1s spectra between $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}, \mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{CoO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}} \mathrm{NWs}$, and $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiO}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs.

Figure S8. Comparison of (a) Cu2p, (b) Ni2p, (c)Co2p, (d) O1s, and (e) S2p XPS spectra of $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs before and after OER stability.

Figure S9. (a) HER and (b) OER performance of the $\mathrm{Cu} \mathrm{NWs}, \mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S}$ NWs, $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs materials in 1.0 M KOH medium.

Figure S10. CV measurements in the potential range from 1.26 to $1.38 \mathrm{~V}(v s$. RHE) at different
 $\mathrm{Cu} @ \mathrm{NiCoO}_{2}$ NWs, and (e) $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs.

Figure S11. (C) LSV curves of materials towards HER normalized by the C_{dl} values.

Figure S12. Electrical resistance of materials measured by 4-point probes method.

Figure S13. The evolution of total gas amount $\left(\mathrm{H}_{2}+\mathrm{O}_{2}\right)$ at different operating currents and time periods.

Table S1. Comparison of the Tafel slope between $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S}_{\mathrm{S}} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs catalyst with previous reports in 1.0 M KOH medium.

Table S2. Comparison of the Tafel slope between $\mathrm{Cu} @ \mathrm{Cu}_{2} \mathrm{~S} @ \mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ catalyst with previous reports in 1.0 M KOH .

Electrocatalyst	Tafel slope ($\mathrm{mV} \mathrm{dec}^{-1}$)	References
Cu@Cu ${ }_{2}$ @ $\mathrm{NiCoO}_{2-\mathrm{x}} \mathrm{S}_{\mathrm{x}}$ NWs /3DF	50	This work
Porous Ni-P nanoplates/GCE		Energy Environ. Sci. 2016, $9,124 \overline{6}$
「NiFe LDHNS@	52	$\bar{A} \bar{d} v$. Mater. 2017, $29,1700017$.
	61	
${ }^{\text {Fe- }}$	62	Angew. Chem. Int. Ed. 2017, 56, $12566 .$
	85	Nano Energy $\mathbf{2} \mathbf{0} \mathbf{1 8} \overline{18}$, $5 \overline{3}, \overline{2} \overline{7} 0$.
$\mathrm{CoS} / \mathrm{CeO}_{x}$	50	Angew. Chem. Int. Ed. 2018, 130, 8790.
Coral-like $\mathrm{Ni}_{3} \overline{\mathrm{~S}}$ - ${ }^{\text {on }}$ Ni Foam	$10 \overline{1}$	$\bar{A} \bar{C} \bar{S} \bar{A} \overline{\text { ppl }} \overline{\text { Mater. }} \overline{\text { Interfaces }} \overline{\mathbf{2} \mathbf{0 1 8}} \overline{1}, \overline{1} 0$, $31330 .$

References

[1] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977-16987.
[2] H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlögl, H.N. Alshareef, Nano Lett., 2016, 16, 7718-7725.
[3] X.D. Wang, H.Y. Chen, Y.F. Xu, J.F. Liao, B.X. Chen, H.S. Rao, D. Bin Kuang, C.Y. Su, J. Mater. Chem. A., 2017, 5, 7191-7199.
[4] J. Kibsgaard, T.F. Jaramillo, Angew. Chemie-Int. Ed., 2014, 53, 14433-14437.

