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Preparation of Cu@Cu2S NWs network     

For preparing Cu@Cu2S NWs, a working electrode of the Cu NWs on 3DF (1 cm x 1 cm) 

was dippded in an an aqueous solution (50 mL) containing 0.75 M of thiourea, while Ag/AgCl 

and graphite rod were used as reference and counter electrode, respectively. An 

electrodeposition process was conducted at an applied potential of -1.0 V (vs. Ag/AgCl) for 

100 s. After that, the sample was cleaned with water three times and was dried at 60 oC in a 

vacuum oven.     

Preparation of Cu@Cu2S@NiO1-xSx NWs (or Cu@Cu2S@CoO1-xSx NWs) network     

A piece of the Cu NWs on 3DF (1 cm x 1 cm), used as the working electrode, was dippded 

in an electrochemical cell containing 50 mL of water dispersed with 10 mM of Ni(NO3)2 (or 
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Co(NO3)2) and 0.75 M of thiourea. Ag/AgCl and graphite rod were used as reference and 

counter electrode, respectively. An electrodeposition process was then carried out at an applied 

potential of -1.0 V (vs. Ag/AgCl) for 100 s. Subsequently, the obtained sample of 

Cu@Cu2S@NiO1-xSx NWs (or Cu@Cu2S@CoO1-xSx NWs) on 3DF was cleaned with water 

three times followed by drying at 60 oC in a vacuum oven before it was investigated 

physicochemical and electrochemical properties.     

Preparation of Cu@NiCoO2 NWs network

For preparing Cu@NiCoO2 NWs on 3DF, a working electrode based on a piece of the Cu 

NWs on 3DF (1 cm x 1 cm) was immersed in a 50 mL of aqueous solution containing 10 mM 

of Ni(NO3)2 and 10 mM Co(NO3)2. An electrodeposition step was then conducted at an applied 

potential of -1.0 V (vs. Ag/AgCl) for 100 s. After the reaction finished, the obtained sample of 

Cu@NiCoO2 NWs on 3DF was washed by water three times and dried at 60 oC in a vacuum 

oven.      

Turnover Frequency Calculations

Firstly, the ECSA was calculated according to Cdl value of materials [1]. In this research, 

metal foam was applied as substrate to support catalyst, thus its Cdl is much higher than that of 

a flat substrate having Cdl between 0.02-0.06 mF cm-2. Therefore, the ECSA of materials could 

be assesses by following equation [2]:  

𝐴𝐸𝐶𝑆𝐴 =
𝐶𝑑𝑙 (𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡)

𝐶𝑑𝑙(𝑓𝑜𝑎𝑚 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒)

where Cdl (foam substrate) is around 1.7 mF cm-2 measured in 1.0 M KOH medium [2]. 

Therefore, AECSA of the Cu NWs (1.9 mF cm-2), Cu@NiCoO2 NWs (3.3 mF cm-2), 

Cu@Cu2S@NiO1-xSx NWs (3.7 mF cm-2), Cu@Cu2S@CoO1-xSx NWs (2.9 mF cm-2), and 
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Cu@Cu2S@NiCoO2-xSx NWs (8.6 mF cm-2) could be estimated to be 1.118, 1.941, 2.176, 

1.706, and 5.059 cm2.  

We applied the following formula for evaluating the per site turnover frequency (TOF) 

[3,4]: 

𝑇𝑂𝐹 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑡𝑢𝑟𝑛 𝑜𝑣𝑒𝑟/𝑐𝑚2 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑒𝑎

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠/𝑐𝑚2 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑎𝑟𝑒𝑎

The total number of hydrogen turn overs was calculated from the current density according 

to:

𝑛𝑜. 𝑜𝑓 𝐻2 = (𝑗
𝑚𝐴

𝑐𝑚2
)(

1𝐶𝑠 ‒ 1

1000 𝑚𝐴
)(

1 𝑚𝑜𝑙 𝑒 ‒

96485.3𝐶
)(

1 𝑚𝑜𝑙 𝐻2

2  𝑚𝑜𝑙 𝑒 ‒
)(

6.023 × 1023𝐻2 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠

1 𝑚𝑜𝑙 𝐻2
) =  3.12 × 1015

𝐻2/𝑠

𝑐𝑚2
 𝑝𝑒𝑟 

𝑚𝐴

𝑐𝑚2

The number of active sites was evaluated from the roughness factor together with the unit 

cell, as seen in the case of Ni5P4 and NiMoP2.[3] A same method was applied to evaluate TOF 

for our synthesized materials.

𝐴𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠𝐶𝑢 = (
4 𝑎𝑡𝑜𝑚/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

47.272Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 =  1.927 × 1015 × 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

𝐴𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠𝑁𝑖𝐶𝑜𝑂2
= (

8 𝑎𝑡𝑜𝑚/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

74.314Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 =  2.263 × 1015 × 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

𝐴𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠𝑁𝑖𝑂1 ‒ 𝑥𝑆𝑥
= (

4 𝑎𝑡𝑜𝑚/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

72.9Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 =  1.444 × 1015 × 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

𝐴𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠𝐶𝑜𝑂1 ‒ 𝑥𝑆𝑥
= (

4 𝑎𝑡𝑜𝑚/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

77.42Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 =  1.387 × 1015 × 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

𝐴𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠𝑁𝑖𝐶𝑜𝑂2 ‒ 𝑥𝑆𝑥
= (

8 𝑎𝑡𝑜𝑚/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙

74.314Å3/𝑢𝑛𝑖𝑡 𝑐𝑒𝑙𝑙
)

2
3 =  2.263 × 1015 × 𝑎𝑡𝑜𝑚𝑠 𝑐𝑚 ‒ 2

𝑟𝑒𝑎𝑙

Finally, TOF was can be calculated by an implied equation as following:

 
𝑇𝑂𝐹 =

( 3.12 × 1015
𝐻2/𝑠

𝑐𝑚2
 𝑝𝑒𝑟 

𝑚𝐴

𝑐𝑚2
)|𝑗|

𝐴𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠 × 𝐴𝐸𝐶𝑆𝐴
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Figure S1. (a-c) SEM images at different magnifications of Cu(OH)2 nanoneedles on 3DF.
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Figure S2. (a-c) SEM images and (d) EDAX spectrum of Cu@Cu2S@NiO1-xSx NWs on 3DF.
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Figure S3. (a-b) SEM images and (c) EDAX spectrum of Cu@Cu2S@CoO1-xSx NWs on 3DF.
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Figure S4. (a-c) SEM images and (d) EDAX spectrum of Cu@NiCoO2 NWs on 3DF.
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Figure S5. The crystalline structures of Cu@NiCoO2 NWs, Cu@Cu2S@NiO1-xSx NWs, and 

Cu@Cu2S@CoO1-xSx NWs.
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Figure S6. Cu(LMM) Auger spectrum of the Cu@Cu2S@NiCoO2-xSx NWs material.
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Figure S7. (a) Survey XPS spectra of Cu@Cu2S@NiO1-xSx NWs and Cu@Cu2S@CoO1-xSx 

NWs; (b) Comparison of Ni2p spectra between Cu@Cu2S@NiO1-xSx NWs and 

Cu@Cu2S@NiCoO2-xSx NWs; (c) Comparison of Co2p spectra between Cu@Cu2S@NiCoO2-

xSx NWs and Cu@Cu2S@CoO1-xSx NWs; (d) Comparison of O1s spectra between 

Cu@Cu2S@NiCoO2-xSx NWs, Cu@Cu2S@CoO1-xSx NWs, and Cu@Cu2S@NiO1-xSx NWs.
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Figure S8. Comparison of (a) Cu2p, (b) Ni2p, (c)Co2p, (d) O1s, and (e) S2p XPS spectra of 

Cu@Cu2S@NiCoO2-xSx NWs before and after OER stability.
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Figure S9. (a) HER and (b) OER performance of the Cu NWs, Cu@Cu2S NWs, 

Cu@Cu2S@NiCoO2-xSx NWs materials in 1.0 M KOH medium.
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Figure S10. CV measurements in the potential range from 1.26 to 1.38 V (vs. RHE) at different 

scan rates: (a) Cu NWs, (b) Cu@Cu2S@NiO1-xSx NWs, (c) Cu@Cu2S@CoO1-xSx NWs, (d) 

Cu@NiCoO2 NWs, and (e) Cu@Cu2S@NiCoO2-xSx NWs.
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Figure S11. (C) LSV curves of materials towards HER normalized by the Cdl values.
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Figure S12. Electrical resistance of materials measured by 4-point probes method.



16

Figure S13. The evolution of total gas amount (H2 + O2) at different operating currents and 

time periods.  
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Table S1. Comparison of the Tafel slope between Cu@Cu2S@NiCoO2-xSx NWs catalyst with 

previous reports in 1.0 M KOH medium. 

Electrocatalyst Tafel slope (mV 

dec-1)

References

Cu@Cu2S@NiCoO2-xSx NWs 63 This work

NiCo2S4 NA/CC 141 Nanoscale 2015, 7, 15122

FeP NAs/CC 45 ACS Catal. 2014, 4, 4065.

CoOx@CN on GCE 115 J. Am. Chem. Soc. 2015, 137, 2688

PCPTF 53 Adv. Mater. 2015, 27, 3175.

CeO2-Cu3P/NF 132 Nanoscale 2018, 10, 2213.

Cu3P/CF 63 ACS Appl. Mater. Interfaces 2016, 8, 

23037

Pr0.5BSCF 45 Adv. Mater. 2016, 28, 6442.

Co-NRCNTs 80 Angew. Chem. Int. Ed. 2014, 53, 4372.
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Table S2. Comparison of the Tafel slope between Cu@Cu2S@NiCoO2-xSx catalyst with 

previous reports in 1.0 M KOH. 

Electrocatalyst Tafel slope 

(mV dec-1)

References

Cu@Cu2S@NiCoO2-xSx NWs /3DF 50 This work

Porous Ni-P nanoplates/GCE 64 Energy Environ. Sci. 2016, 9, 1246.

NiFe LDHNS@DG 52 Adv. Mater. 2017, 29, 1700017.

B,N:Mo2C@BCN 61 ACS Catal. 2018, 8, 8296.

Fe-Ni3C 62 Angew. Chem. Int. Ed. 2017, 56, 

12566.

Ru-RuPx-CoxP 85 Nano Energy 2018, 53, 270.

CoS/CeOx 50 Angew. Chem. Int. Ed. 2018, 130, 

8790.

Coral‐like Ni3S2 on Ni Foam 101 ACS Appl. Mater. Interfaces 2018, 10, 

31330.



19

References

[1] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 

16977–16987.

[2] H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlögl, H.N. Alshareef, 

Nano Lett., 2016, 16, 7718–7725.

[3] X.D. Wang, H.Y. Chen, Y.F. Xu, J.F. Liao, B.X. Chen, H.S. Rao, D. Bin Kuang, C.Y. Su, 

J. Mater. Chem. A., 2017, 5, 7191–7199. 

[4] J. Kibsgaard, T.F. Jaramillo, Angew. Chemie-Int. Ed., 2014, 53, 14433–14437.


