Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

High-efficient Overall Water Splitting Over Porous Interconnected Network

by Nickel Cobalt Oxysulfide Interfacial Assembled Cu@Cu₂S Nanowires

Duy Thanh Tran,^a Van Hien Hoa,^a Huu Tuan Le,^a Nam Hoon Kim,^a Joong Hee Lee^{a,b*}

^aAdvanced Materials Institute for BIN Convergence Technology (BK21 Plus Global Program),

Department of BIN Convergence Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.

^bCarbon Composite Research Center, Department of Polymer-Nanoscience and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea

*Corresponding authors: E-Mail: jhl@jbnu.ac.kr (Joong Hee Lee)

Fax: +82 832702341; Tel: +82 832702342

Preparation of Cu@Cu₂S NWs network

For preparing Cu@Cu₂S NWs, a working electrode of the Cu NWs on 3DF (1 cm x 1 cm) was dippded in an an aqueous solution (50 mL) containing 0.75 M of thiourea, while Ag/AgCl and graphite rod were used as reference and counter electrode, respectively. An electrodeposition process was conducted at an applied potential of -1.0 V (*vs.* Ag/AgCl) for 100 s. After that, the sample was cleaned with water three times and was dried at 60 °C in a vacuum oven.

Preparation of Cu@Cu₂S@NiO_{1-x}S_x NWs (or Cu@Cu₂S@CoO_{1-x}S_x NWs) network

A piece of the Cu NWs on 3DF (1 cm x 1 cm), used as the working electrode, was dippded in an electrochemical cell containing 50 mL of water dispersed with 10 mM of $Ni(NO_3)_2$ (or $Co(NO_3)_2$) and 0.75 M of thiourea. Ag/AgCl and graphite rod were used as reference and counter electrode, respectively. An electrodeposition process was then carried out at an applied potential of -1.0 V (*vs.* Ag/AgCl) for 100 s. Subsequently, the obtained sample of $Cu@Cu_2S@NiO_{1-x}S_x$ NWs (or $Cu@Cu_2S@CoO_{1-x}S_x$ NWs) on 3DF was cleaned with water three times followed by drying at 60 °C in a vacuum oven before it was investigated physicochemical and electrochemical properties.

Preparation of Cu@NiCoO₂ NWs network

For preparing Cu@NiCoO₂ NWs on 3DF, a working electrode based on a piece of the Cu NWs on 3DF (1 cm x 1 cm) was immersed in a 50 mL of aqueous solution containing 10 mM of Ni(NO₃)₂ and 10 mM Co(NO₃)₂. An electrodeposition step was then conducted at an applied potential of -1.0 V (*vs.* Ag/AgCl) for 100 s. After the reaction finished, the obtained sample of Cu@NiCoO₂ NWs on 3DF was washed by water three times and dried at 60 °C in a vacuum oven.

Turnover Frequency Calculations

Firstly, the ECSA was calculated according to C_{dl} value of materials [1]. In this research, metal foam was applied as substrate to support catalyst, thus its C_{dl} is much higher than that of a flat substrate having C_{dl} between 0.02-0.06 mF cm⁻². Therefore, the ECSA of materials could be assesses by following equation [2]:

$$A_{ECSA} = \frac{C_{dl (catalyst)}}{C_{dl(foam \, substrate)}}$$

where $C_{dl \text{ (foam substrate)}}$ is around 1.7 mF cm⁻² measured in 1.0 M KOH medium [2].

Therefore, A_{ECSA} of the Cu NWs (1.9 mF cm⁻²), Cu@NiCoO₂ NWs (3.3 mF cm⁻²), Cu@Cu₂S@NiO_{1-x}S_x NWs (3.7 mF cm⁻²), Cu@Cu₂S@CoO_{1-x}S_x NWs (2.9 mF cm⁻²), and

Cu@Cu₂S@NiCoO_{2-x}S_x NWs (8.6 mF cm⁻²) could be estimated to be 1.118, 1.941, 2.176, 1.706, and 5.059 cm².

We applied the following formula for evaluating the per site turnover frequency (TOF) [3,4]:

$$TOF = \frac{number of total hydrogen turn over/cm^2 of geometric area}{number of active sites/cm^2 of geometric area}$$

The total number of hydrogen turn overs was calculated from the current density according to:

$$no. of H_2 = (j\frac{mA}{cm^2})(\frac{1Cs^{-1}}{1000 mA})(\frac{1 mol e^{-}}{96485.3C})(\frac{1 mol H_2}{2 mol e^{-}})(\frac{6.023 \times 10^{23} H_2 molecules}{1 mol H_2}) = 3.12 \times 10^{15} \frac{H_2/s}{cm^2} per \frac{mA}{cm^2}$$

The number of active sites was evaluated from the roughness factor together with the unit cell, as seen in the case of Ni_5P_4 and $NiMoP_2$.[3] A same method was applied to evaluate TOF for our synthesized materials.

Active sites_{Cu} =
$$\left(\frac{4 \text{ atom/unit cell}}{47.272 \text{\AA}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 1.927 \times 10^{15} \times \text{atoms cm}_{real}^{-2}$$

Active sites_{NiCoO₂} =
$$\left(\frac{8 \text{ atom/unit cell}}{74.314\text{\AA}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 2.263 \times 10^{15} \times \text{ atoms cm}_{real}^{-2}$$

Active sites<sub>NiO_{1-x}S_x =
$$\left(\frac{4 \text{ atom/unit cell}}{72.9\text{\AA}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 1.444 \times 10^{15} \times \text{atoms cm}_{real}^{-2}$$</sub>

Active sites<sub>CoO_{1-x}S_x =
$$\left(\frac{4 \text{ atom/unit cell}}{77.42\text{\AA}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 1.387 \times 10^{15} \times \text{atoms cm}_{real}^{-2}$$</sub>

Active sites<sub>NiCoO_{2-x}S_x =
$$\left(\frac{8 \text{ atom/unit cell}}{74.314\text{\AA}^3/\text{unit cell}}\right)^{\frac{2}{3}} = 2.263 \times 10^{15} \times \text{atoms cm}_{real}^{-2}$$</sub>

Finally, TOF was can be calculated by an implied equation as following:

$$TOF = \frac{(3.12 \times 10^{15} \frac{H_2/s}{cm^2} per \frac{mA}{cm^2})|j|}{Active \ sites \times A_{ECSA}}$$

Figure S1. (a-c) SEM images at different magnifications of Cu(OH)₂ nanoneedles on 3DF.

Figure S2. (a-c) SEM images and (d) EDAX spectrum of Cu@Cu₂S@NiO_{1-x}S_x NWs on 3DF.

Figure S3. (a-b) SEM images and (c) EDAX spectrum of $Cu@Cu_2S@CoO_{1-x}S_x$ NWs on 3DF.

Figure S4. (a-c) SEM images and (d) EDAX spectrum of Cu@NiCoO₂ NWs on 3DF.

Figure S5. The crystalline structures of Cu@NiCoO₂ NWs, Cu@Cu₂S@NiO_{1-x}S_x NWs, and Cu@Cu₂S@CoO_{1-x}S_x NWs.

Figure S6. Cu(LMM) Auger spectrum of the Cu@Cu₂S@NiCoO_{2-x}S_x NWs material.

Figure S7. (a) Survey XPS spectra of Cu@Cu₂S@NiO_{1-x}S_x NWs and Cu@Cu₂S@CoO_{1-x}S_x NWs; (b) Comparison of Ni2p spectra between Cu@Cu₂S@NiO_{1-x}S_x NWs and Cu@Cu₂S@NiCoO_{2-x}S_x NWs; (c) Comparison of Co2p spectra between Cu@Cu₂S@NiCoO₂. $_xS_x$ NWs and Cu@Cu₂S@CoO_{1-x}S_x NWs; (d) Comparison of O1s spectra between Cu@Cu₂S@NiCoO_{2-x}S_x NWs, Cu@Cu₂S@CoO_{1-x}S_x NWs, and Cu@Cu₂S@NiO_{1-x}S_x NWs.

Figure S8. Comparison of (a) Cu2p, (b) Ni2p, (c)Co2p, (d) O1s, and (e) S2p XPS spectra of Cu@Cu₂S@NiCoO_{2-x}S_x NWs before and after OER stability.

Figure S9. (a) HER and (b) OER performance of the Cu NWs, Cu@Cu₂S NWs, Cu@Cu₂S@NiCoO_{2-x}S_x NWs materials in 1.0 M KOH medium.

Figure S10. CV measurements in the potential range from 1.26 to 1.38 V (*vs.* RHE) at different scan rates: (a) Cu NWs, (b) Cu@Cu₂S@NiO_{1-x}S_x NWs, (c) Cu@Cu₂S@CoO_{1-x}S_x NWs, (d) Cu@NiCoO₂ NWs, and (e) Cu@Cu₂S@NiCoO_{2-x}S_x NWs.

Figure S11. (C) LSV curves of materials towards HER normalized by the C_{dl} values.

Figure S12. Electrical resistance of materials measured by 4-point probes method.

Figure S13. The evolution of total gas amount $(H_2 + O_2)$ at different operating currents and time periods.

Table S1. Comparison of the Tafel slope between $Cu@Cu_2S@NiCoO_{2-x}S_x$ NWs catalyst withprevious reports in 1.0 M KOH medium.

Electrocatalyst	Tafel slope (mV	References
 	dec ⁻¹)	
Cu@Cu ₂ S@NiCoO _{2-x} S _x NWs	63	This work
NiCo ₂ S ₄ NA/CC	141	Nanoscale 2015 , 7, 15122
FeP NAs/CC	45	ACS Catal. 2014, 4, 4065.
CoOx@CN on GCE	115	J. Am. Chem. Soc. 2015, 137, 2688
PCPTF	53	<i>Adv. Mater.</i> 2015 , <i>27</i> , 3175.
CeO ₂ -Cu ₃ P/NF	132	Nanoscale 2018 , 10, 2213.
Cu ₃ P/CF	63	ACS Appl. Mater. Interfaces 2016, 8,
- 	1 	23037
Pr _{0.5} BSCF	45	<i>Adv. Mater.</i> 2016 , <i>28</i> , 6442.
Co-NRCNTs	80	Angew. Chem. Int. Ed. 2014, 53, 4372.

Table S2. Comparison of the Tafel slope between $Cu@Cu_2S@NiCoO_{2-x}S_x$ catalyst with previous reports in 1.0 M KOH.

Electrocatalyst	Tafel slope	References
	(mV dec ⁻¹)	
Cu@Cu ₂ S@NiCoO _{2-x} S _x NWs /3DF	50	This work
Porous Ni-P nanoplates/GCE	64	Energy Environ. Sci. 2016, 9, 1246.
NiFe LDHNS@DG	52	Adv. Mater. 2017, 29, 1700017.
B,N:Mo ₂ C@BCN	61	ACS Catal. 2018, 8, 8296.
Fe-Ni ₃ C	62	Angew. Chem. Int. Ed. 2017, 56,
		12566.
Ru-RuP _x -Co _x P	85	Nano Energy 2018 , 53, 270.
CoS/CeO _x	50	Angew. Chem. Int. Ed. 2018, 130,
		8790.
Coral-like Ni_3S_2 on Ni Foam	101	ACS Appl. Mater. Interfaces 2018, 10,
		31330.

References

- [1] C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977–16987.
- [2] H. Liang, A.N. Gandi, D.H. Anjum, X. Wang, U. Schwingenschlögl, H.N. Alshareef, *Nano Lett.*, 2016, 16, 7718–7725.
- [3] X.D. Wang, H.Y. Chen, Y.F. Xu, J.F. Liao, B.X. Chen, H.S. Rao, D. Bin Kuang, C.Y. Su, *J. Mater. Chem. A.*, 2017, 5, 7191–7199.
- [4] J. Kibsgaard, T.F. Jaramillo, Angew. Chemie-Int. Ed., 2014, 53, 14433–14437.