Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Fig. S1. SEM images of CMK-3 at different scales. (a) ×20,000 (b) ×50,000, and (c) ×150,000.

Fig. S2. (a) Bright field TEM image and (b) dark-field STEM image of CMK-3.

Fig. S3. (a and c) Bright field TEM images (b and d) dark field STEM images of CMK-FeTPP obtained in different directions.

Fig. S4. FTACV to determine the redox potentials of Fe(III) in CMK-FeTPP in argon-saturated 0.1 M KCl.

Fig. S5. FEs of an FeTPP-deposited electrode for CO (red) and H_2 (black) and partial current density for CO production (blue).

Fig. S6. Fe(III)/Fe(II) cyclic voltammograms at different scan rates in acidic electrolyte (pH 1) obtained by adding HClO₄ into 0.1 M KCl electrolyte.

Fig. S7. Tafel analysis for CMK-FeTPP (red) and Fe(III) TPP (black).

Table S1. Comparison of catalytic activities of CMK-FeTPP prepared in this study with the state-of-the-art of immobilised porphyrin complex catalysts onto glassy carbon substrate for electrochemical CO_2 reduction.

#	Catalysts (Electrolysis V vs. RHE, pH)	Substrate	Active amount of molecule × 10 ⁻⁸ mol cm ⁻²	Current Density mAcm ⁻²	FE CO/H ₂ %	eTOF s ⁻¹	Reference
1	CMK-FeTPP (-0.79V, pH 4.2)	Glassy carbon plate	0.088	~ 0.72	92.1% / 9.1%	3.9	This work
2	CMK-FeTPP (-0.89V, pH 4.2)	Glassy carbon plate	0.088	~ 1.16	90.7% / 10.2%	6.2	This work
3	FePGF (-0.59V. pH 4.2)	Glassy carbon plate	0.13	~ 0.20	97.0% / 4.0%	0.8	1
4	CAT _{pyr} /MWCNT (-0.59V, pH 7.3)	Glassy carbon plate	2.4	~ 0.20	93% / 4%	0.04	2
5	CAT _{CO2H} /MWCNT (-0.62V, pH 7.3)	Glassy carbon plate	0.64	~ 0.16	80% / n.a.	0.1	3
6	CoTPP/SWCNT (-0.68V, pH 7.2)	Glassy carbon plate	17	~ 3.2	85% / 9%	0.08	4
7	FeTPP/SWCNT (-0.68V, pH 7.2)	Glassy carbon plate	17	~ 0.9	64% / 9%	0.08	4
8	Fe-PB/MWCNT (-0.63V, pH 7.3)	Glassy carbon plate	0.37	~ 0.49	100% / 0 %	1.5	5
9	Fe-PB/MWCNT (-0.78V, pH 7.3)	Glassy carbon plate	0.37	~ 1.5	95% / 5 %	4.5	5
10	FeTPP/MWCNT (-0.63V, pH 7.3)	Glassy carbon plate	0.25	~ 0.22	96% / 6%	1.0	5
11	FeTPP/MWCNT (-0.78V, pH 7.3)	Glassy carbon plate	0.25	~ 0.6	78% / 22%	2.5	5
12	D-P-CoPc/Ketjen black (-0.61V, pH 7.3)	Glassy carbon plate	11.1	~ 2.5	97 % / n.a.	0.1	6

The effective turnover frequency (eTOF) was calculated based on the amount of current from the chronoamperometric analysis and the amount of electrochemically active catalyst from the integration of the Fe(III)/Fe(II) redox wave in Fig. S6.

I : The current obtained by electrolysis at -0.79 V (0.00072 A cm⁻² \times 2 cm² = 0.00144 A)

FE: The CO faradaic efficiency obtained by electrolysis at -0.79 V (92.1 %)

F: Faraday constant (96485 C mol⁻¹)

n: The amount of catalyst utilized for catalysis ($8.8 \times 10^{-10} \text{ mol cm}^{-2} \times 2 \text{ cm}^2 = 1.76 \times 10^{-9} \text{ mol}$)

 $eTOF(s^{-1}) = \frac{0.00144A \cdot 0.921}{2 \cdot 96485 \ C \ mol^{-1} \cdot 1.76 \times 10^{-9} mol} = 3.9 \ s^{-1}$

References

- J. Choi, P. Wagner, R. Jalili, J. Kim, D. R. MacFarlane, G. G. Wallace and D. L. Officer, *Adv. Energy Mater.*, 2018, 8, 1801280.
- 2. A. Maurin and M. Robert, J. Am. Chem. Soc., 2016, 138, 2492-2495.
- 3. A. Maurin and M. Robert, Chem. Commun., 2016, 52, 12084-12087.
- 4. X. M. Hu, M. H. Rønne, S. U. Pedersen, T. Skrydstrup and K. Daasbjerg, Angew. Chem., Int. Ed., 2017, 56, 6468-6472.
- P. T. Smith, B. P. Benke, Z. Cao, Y. Kim, E. M. Nichols, K. Kim and C. J. Chang, *Angew. Chem., Int. Ed.*, 2018, 57, 9684-9688.
- H. Wu, M. Zeng, X. Zhu, C. Tian, B. Mei, Y. Song, X. L. Du, Z. Jiang, L. He and C. Xia, *ChemElectroChem*, 2018, 5, 2717-2721.