# **Electronic supplementary information**

From Tanghulu-like to Cattail-like SiC Nanowire Architectures:

#### Interfacial Design of Nanocellulose Composites toward Highly

### **Thermal Conductivity**

Bai Xue<sup>*a,b*\*#</sup>, Shengdu Yang<sup>*a*#</sup>, Xin Sun<sup>*a*</sup>, Lan Xie<sup>*a,b*\*</sup>, and Qiang Zheng<sup>*c*</sup>.

a. Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.

b. National Engineering Research Center for Compounding and Modification of
 Polymer Materials; National and Local Joint Engineering Research Center for
 Functional Polymer Membrane Materials and Membrane Processes, Guiyang 550014,
 China.

c. College of Polymer Science and Engineering, Zhejiang University, Hangzhou

310000, China.

\**Corresponding Author: Bai Xue,* bxue@gzu.edu.cn *or* xueb126@126.com *Lan Xie,* mm.lanxie@gzu.edu.cn *or* lancysmile@163.com

# Shengdu Yang and Bai Xue contributed equally to this work.



Figure S1. TEM image of the bare SiCNWs



Figure S2: (a) and (b) TEM images of L-MoS<sub>2</sub>-SiCNWs. (c) and (d) TEM images of

H-MoS<sub>2</sub>-SiCNWs.



Figure S3. Digital photos showing the dispersion sate of synthetic nanohybrids



Figure S4: Full-range XPS spectra of bare SiCNW, L-MoS<sub>2</sub>-SiCNW, and H-MoS<sub>2</sub>-

SiCNW hybrids.



Figure S5: The cross-section SEM image of pure CNF film.



Figure S6: Digital photos of (a, b) CNF/SiCNW, (c, d) CNF/L-MoS<sub>2</sub>-SiCNW and (e,

f) CNF/H-MoS<sub>2</sub>-SiCNW films, respectively.

| Ref. | Fillers                   | Matrix | Loading     | TC (W               | m <sup>-1</sup> K <sup>-1</sup> ) | TCE  | Testing way  |
|------|---------------------------|--------|-------------|---------------------|-----------------------------------|------|--------------|
|      |                           |        | (wt%)       | $TC_{\perp}$        | <i>TC</i> //                      | (%)  |              |
| S1   | BNNS                      | Epoxy  | ~40         | $\diamondsuit$ 0.7  | ♦6.54                             | 3170 | Steady-state |
| S2   | PMMA-g-FCNT               | PMMA   | 15          | ◇~0.35              | ◆1.16                             | 510  | Laser flash  |
| S3   | ND                        | CNF    | 0.5         | ◊0.118              | ♦9.82                             | 775  | Laser flash  |
| S4   | <i>f</i> -BNNS            | CNF    | 70          | ◇~0.6               | ♦ 12.79                           | 699  | Laser flash  |
| S5   | FCNT                      | NFC    | 35          | ◊0.83               | ◆14.1                             | 729  | Laser flash  |
| S6   | MgO@rGO                   | NFC    | 20          | ♦0.32               | <b>♦</b> 6.17                     | 630  | Laser flash  |
| S7   | BNNPs                     | NFC    | 40          | ◇~0.5               | ◆20.64                            | 985  | Laser flash  |
| S8   | GNP                       | PDA    | 44.4        | ◊0.69               | ◆13.42                            | -    | Laser flash  |
| S9   | rGO                       | NFC    | 30          | $\diamondsuit 0.07$ | <b>•</b> 6.17                     | 550  | Laser flash  |
| S10  | CPGO                      | CNF    | 70          | ◇~0.3               | ♦12.75                            | 165  | Laser flash  |
| S11  | BNNS@PDA                  | ANF    | 50          | ◇0.62               | ◆3.94                             | 196  | Steady-state |
| S12  | BNNS-OH                   | CNF    | 75          | ◊0.45               | ◆15                               | 235  | Laser flash  |
| This | H-MoS <sub>2</sub> -SiCNW | CNF    | 40          | ☆0.68               | ★19.76                            | 1408 | Laser flash  |
| work |                           |        | (22.5 vol%) |                     |                                   |      |              |

## Table S1: Comparison with TC and TCE values of previously reported composites

According to our defined the rule of mixtures (Eq. (S1)), the thermal conductivity of L/H-MoS<sub>2</sub>-SiCNW ( $K_{p(mix)}$ ) can be calculated from,

$$K_{p(mix)} = K_{SiCNW}f + K_{MoS_2}(1-f)$$
 (S1)

where  $K_{MoS2}$ =82 Wm<sup>-1</sup>K<sup>-1</sup>,  $K_{SiCNW}$ =120 Wm<sup>-1</sup>K<sup>-1</sup> and f is the volume fraction of SiCNW in MoS<sub>2</sub>/SiCNW hybrid.

$$\rho_{\rm SiCNW} = 3.21 {\rm g/cm^3}, \rho_{\rm MoS2} = 4.80 {\rm g/cm^3}$$

The exact content of MoS<sub>2</sub> is 78.6 wt% (64.8 vol%) in L-MoS<sub>2</sub>-SiCNWs and 97.0 wt% (95.6 vol%) in H-MoS<sub>2</sub>-SiCNWs.

Thus, f = 35.2 vol% (L-MoS<sub>2</sub>-SiCNW), f = 4.4 vol% (H-MoS<sub>2</sub>-SiCNW)



**Figure S7:** The average overlap area ( ${}^{\bar{A}_s}$ ) between adjacent fillers for (a) bare SiCNWs and (b) H-MoS<sub>2</sub>-SiCNWs. (c) Schematic diagram of the average overlap area ( ${}^{\bar{A}_s}$ ).

$$\bar{A}_{s} = \frac{2D^{2}}{\pi} \left[ \ln \left( \sin \frac{\theta}{2} \right) - \ln \left( \cos \frac{\theta}{2} \right) \right]_{0}^{\frac{\pi}{2}}$$
(S2)
$$A_{s,c} = \frac{D_{(a,b)}}{\sin \left( \theta_{c} \right)}$$
(S3)

$$\bar{A}_{s} = \frac{2D^{2}}{\pi} \delta(p) \text{ (S4)}$$
$$\delta(p) = \ln \left[ \frac{\sqrt{1 + p^{-1}} + \sqrt{1 - p^{-1}}}{\sqrt{1 + p^{-1}} - \sqrt{1 - p^{-1}}} \right] \text{ (S5)}$$

 $\bar{A}_s = 5.46 \times 10^{-14} \text{ m}^2$  for bare SiCNWs and  $\bar{A}_s = 3.19 \times 10^{-12} \text{ m}^2$  for H-MoS<sub>2</sub>-SiCNWs. **Table S2:** The values of  $V_c$ ,  $K_o$ , and t(p) for CNF/SiCNW and CNF/H-MoS<sub>2</sub>-SiCNW.

| Sample                        | V <sub>c</sub>       | $K_{0}$ | <i>t(p)</i> |
|-------------------------------|----------------------|---------|-------------|
| CNF/SiCNW                     | 8.7×10 <sup>-4</sup> | 5.95    | 0.23        |
| CNF/H-MoS <sub>2</sub> -SiCNW | 8.0×10 <sup>-3</sup> | 6.79    | 0.50        |



Figure S8. (a) Typical strain-stress curve and (b) Tensile strength and toughness of

pure CNF film.



Figure S9. Volume resistivities of Pristine CNF, SiCNW, and MoS<sub>2</sub>

As shown in Figure S9, the volume resistance of pure SiCNWs (2.1×10<sup>14</sup>  $\Omega$ ·cm)

is far higher than that of pure CNF film  $(7.9 \times 10^{10} \ \Omega \cdot cm)$ . Thus, the volume resistance of CNF/SiCNW is largely increased to  $2.4 \times 10^{13} \ \Omega \cdot cm$  with the introduction of 22.5 vol% SiCNWs. However, the volume resistance of MoS<sub>2</sub> is as low as  $1.3 \times 10^7 \ \Omega \cdot cm$ . Hence, with the introduction of SiCNW hybrids (L-MoS<sub>2</sub>-SiCNW and H-MoS<sub>2</sub>-SiCNW), the volume resistances of CNF/L-MoS<sub>2</sub>-SiCNW and CNF/H-MoS<sub>2</sub>-SiCNW are moderately reduced to  $1.7 \times 10^{13} \ \Omega \cdot cm$  and  $4.1 \times 10^{12} \ \Omega \cdot cm$ , respectively, which is still superior to that of pure CNF film.

#### References

S1. J. Han, G. Du, W. Gao and H. Bai, Adv. Funct. Mater., 2019, 29, 1904c12.

S2. X. Wang and P. Wu, Chem. Eng. J., 2019, 369, 272-279.

S3. N. Song, S. Cui, X. Hou, P. Ding and L. Shi, ACS Appl. Mater. Interfaces, 2017, 9, 40766-40773.

S4. K. Wu, J. Fang, J. Ma, R. Huang, S. Chai, F. Chen and Q. Fu, *ACS Appl. Mater. Interfaces*, 2017, **9**, 30035-30045.

S5. X. Wang and P. Wu, ACS Appl. Mater. Interfaces, 2018, 10, 34311-34321.

S6. M. Ma, L. Xu, L. Qiao, S. Chen, Y. Shi, H. He and X. Wang, *Chem. Eng. J.*, 2019, 385, 123714.

S7. Q. Li, Z. Xue, J. Zhao, C. Ao, X. Jia, T. Xia, Q. Wang, X. Deng, W. Zhang and C.
Lu, *Chem. Eng. J.*, 2020, **383**, 123101.

S8. F. Luo, K. Wu, J. Shi, X. Du, X. Li, L. Yang and M. Lu, *J. Mater. Chem. A*, 2017,
5, 18542-18550.

S9. N. Song, D. Jiao, P. Ding, S. Cui, S. Tang and L. Shi, J. Mater. Chem. C, 2016, 4,

305-314.

- S10. Y. Liu, M. Lu, Z. Hu, L. Liang, J. Shi, X. Huang, M. Lu and K. Wu, Chem. Eng. J., 2019, 383, 122733.
- S11. T. Ma, Y. Zhao, K. Ruan, X. Liu, J. Zhang, Y. Guo, X. Yang, J. Kong and J. Gu, ACS Appl. Mater. Interfaces, 2020, 12, 1677-1686.
- S12. Z. Hu, S. Wang, G. Chen, Q. zhang, K. Wu, J. Shi, L. Liang and M. Lu, *Compos. Sci. Technol.*, 2018, **168**, 287-295.