Supporting Information

## Enhancing Solar-Thermal-Electric Energy Conversion Based on m-PEGMA/GO Synergistic Phase Change Aerogels

Ruirui Cao<sup>1,2\*</sup>, Dequan Sun<sup>3</sup>, Liangliang Wang<sup>1</sup>, Zhengguang Yan<sup>1</sup>, Wenquan Liu<sup>1</sup>, Xin Wang<sup>1\*</sup>, and Xingxiang Zhang<sup>2,4\*</sup>

<sup>1</sup>Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China

<sup>2</sup>School of Material Science and Engineering, Tiangong University, Tianjin 300387, China

<sup>3</sup>Xinlian College of Henan Normal University, Zhengzhou 450046, China

<sup>4</sup>Tianjin Municipal Key Lab of Advanced Fiber and Energy Storage Technology, Tianjin 300387, China

### **Corresponding Author**

- \* Ruirui Cao, E-mail: rrcao0403@vip.henu.edu.cn
- \* Xin Wang, E-mail: <u>xwang2008@vip.henu.edu.cn</u>
- \* Xingxiang Zhang, E-mail: <u>zhangpolyu@aliyun.com</u>

### Characterization

Fourier-transformed infrared (FT-IR) spectra were recorded on a spectrometer (VERTEX 70, Brucker, Germany) in the range of 4000 to 400 cm<sup>-1</sup>. Raman spectra were recorded on an XploRA PLUS Raman microscope (Horiba Company, Japan) equipped with a 638-nm laser source. The morphology and microscopic structure of PCAs were characterized by field-emission SEM system (Gemini SEM500, ZEISS Company, Germany) with an accelerating voltage of 10 kV. X-ray diffraction (XRD) was performed using a Rigaku D/MAX-gA diffractometer (Rigaku Company, Japan) with a filtered Cu K $\alpha$  radiation source ( $\lambda = 0.15406$  nm). Diffractograms were obtained in the range of  $3^{\circ}$  to  $40^{\circ}$  (20) and a scan rate of 8 °/min. The thermal property of PCAs were evaluated by differential scanning calorimetry (DSC, DSC200 F3, NETZSCH Company, Germany) in the range of  $-10\sim100$  °C at a rate of  $\pm10$ °C/min under a nitrogen atmosphere. Thermogravimetric analysis (TGA) was evaluated on a thermogravimetric analyzer (STA449F3, NETZSCH Company, Germany) in the range of 40~800°C at a heating rate of 10 °C/min under a nitrogen atmosphere. The thermal reliability of 100 heating/cooling cycles was measured by a programmable controller (Giant Force, China) with temperature changing from 0 to 80°C. After that, the thermal reliability and structural stability were determined by DSC and FT-IR analysis, respectively, before and after 100 thermal cycles. Solarthermal-electric energy conversion and storage of PCA-loaded TEGs were characterized by a handy thermometer (RKC Instrument Inc., Japan), a simulated solar illumination (CEL-S500/350, CEAULIGHT, China) at a constant intensity of 200 mW/cm<sup>2</sup>, and a Keithley electrometer (6514 System Electrometer, A Tektronix Company).<sup>1</sup> Therein, the PCA3 (4.50 g) and PCA4 (2.75 g) were encapsulated on the side of commercial thermoelectric device to fabricate PCA-loaded TEGs, which were marked as TEG1 and TEG2, respectively. The thermoelectric figure of merit (ZT) of the commercial thermoelectric device used in this study is about  $0.75 \sim 0.9$ .

| Specimen | m-PEGMA (g) | APS (g) | GO (wt%) <sup>a</sup> | EDA (µL) |
|----------|-------------|---------|-----------------------|----------|
| c-PCM    | 5.0         | 0.05    | 0.0                   | 0        |
| PCA1     | 5.0         | 0.05    | 0.5                   | 40       |
| PCA2     | 5.0         | 0.05    | 1.0                   | 80       |
| PCA3     | 5.0         | 0.05    | 1.5                   | 120      |
| PCA4     | 5.0         | 0.05    | 2.0                   | 160      |
| PCA5     | 5.0         | 0.05    | 3.0                   | 240      |
| PCA6     | 5.0         | 0.05    | 5.0                   | 400      |

Table S1. Experimental parameters.

<sup>a</sup> The loading of GO in the experimental section.



Fig. S1. (a) FT-IR spectra of m-PEGMA, PCA1, PCA2, PCA4, PCA5 and PCA6, (b) FT-IR spectra of GO and m-PEGMA-g-GO (Note that the m-PEGMA-g-GO comes from the PCA2 sample, which was exhaustively washed to remove the free m-PEGMA chains adsorbed on the surface of GO<sup>2</sup>).



Fig. S2. SEM micrographs of (a) c-PCM, (b) PCA1, and (c) PCA5.

| Specimen | GO (wt%) <sup>a</sup> | <i>T</i> <sub>5 %</sub> (°C) | $W_{\mathrm{Re}}$ (wt%) | GO (wt%) <sup>b</sup> |
|----------|-----------------------|------------------------------|-------------------------|-----------------------|
| GO       |                       | 67                           | 35.09                   |                       |
| c-PCM    | 0.00                  | 354                          | 0.00                    | 0.00                  |
| PCA1     | 0.50                  | 359                          | 0.68                    | 1.94                  |
| PCA2     | 1.00                  | 354                          | 0.85                    | 2.42                  |
| PCA3     | 1.50                  | 360                          | 0.97                    | 2.76                  |
| PCA4     | 2.00                  | 356                          | 1.02                    | 2.91                  |
| PCA5     | 3.00                  | 354                          | 1.62                    | 4.62                  |
| PCA6     | 5.00                  | 324                          | 2.75                    | 7.84                  |

Table S2. Thermal stability of GO and PCAs from TGA analysis.

<sup>a</sup> The loading of GO in the experimental section.

<sup>b</sup> The actual loading of GO in the final specimen.



Fig. S3. XRD pattern of the raw GO.

| Table S3. | X-ray | diffraction | data | of PCAs. |
|-----------|-------|-------------|------|----------|
|-----------|-------|-------------|------|----------|

| Specimen | 2θ (°) |        | FWHM  |       | $d_{101}$ | $D_{101}$ | $d_{021}$ | $D_{021}$ |
|----------|--------|--------|-------|-------|-----------|-----------|-----------|-----------|
|          |        |        |       |       | (nm)      | (nm)      | (nm)      | (nm)      |
|          | 101    | 021    | 101   | 021   | _         |           |           |           |
| c-PCM    | 19.180 | 23.340 | 0.470 | 0.709 | 0.462     | 16.951    | 0.381     | 11.314    |
| PCA1     | 19.080 | 23.140 | 0.468 | 0.755 | 0.465     | 17.022    | 0.384     | 10.551    |
| PCA2     | 19.240 | 23.440 | 0.566 | 0.794 | 0.461     | 14.078    | 0.379     | 10.099    |
| PCA3     | 19.260 | 23.380 | 0.515 | 0.712 | 0.460     | 15.472    | 0.380     | 11.267    |
| PCA4     | 19.180 | 23.420 | 0.534 | 0.707 | 0.462     | 14.920    | 0.380     | 11.348    |
| PCA5     | 19.180 | 23.320 | 0.463 | 0.696 | 0.462     | 17.208    | 0.381     | 11.525    |
| PCA6     | 19.260 | 23.380 | 0.484 | 0.706 | 0.460     | 16.463    | 0.380     | 11.363    |

| Reference | PCMs                                                          | Heating rate | $\Delta H_{\rm m}$ | χ     |
|-----------|---------------------------------------------------------------|--------------|--------------------|-------|
|           |                                                               | (K/min)      | (J/g)              | (%)   |
| [21]      | Octadecanol (OA)                                              | 5            | 204                | 100.0 |
|           | RGO-2/OA (10% RGO)                                            | 5            | 166                | 90.4  |
|           | Stearic acid (SA)                                             | 5            | 185                | 100.0 |
|           | RGO-2/SA (10% RGO)                                            | 5            | 165                | 99.1  |
| [30]      | Paraffin                                                      | 10           | 202.2              | 100.0 |
|           | MH-GP200 (3% RGO) <sup>a</sup>                                | 10           | 201.5              | 102.7 |
| [32]      | Lauric acid (LA)                                              | 10           | 216.6              | 100.0 |
|           | LA (1.2% GOA) <sup>b</sup>                                    | 10           | 203.2              | 95.0  |
|           | LA (1.9% G <sub>25</sub> -GO <sub>75</sub> -CAs) <sup>c</sup> | 10           | 207.9              | 97.8  |
|           | LA (2.0% G <sub>40</sub> -GO <sub>60</sub> -CAs) <sup>c</sup> | 10           | 203.7              | 96.0  |
| [26]      | Tetradecanol (TD)                                             | 10           | 202.2              | 100.0 |
|           | TD/EGA-1 (5% EGA) <sup>d</sup>                                | 10           | 191.8              | 100.8 |
|           | TD/EGA-2 (10% EGA) <sup>d</sup>                               | 10           | 177.7              | 98.6  |
|           | TD/VGA-1 (5% VGA) <sup>e</sup>                                | 10           | 190.1              | 100.0 |
|           | TD/VGA-2 (10% VGA) <sup>e</sup>                               | 10           | 177.6              | 98.6  |
| [54]      | PPCM                                                          | 10           | 86.8               | 100.0 |
|           | GPPCM (1.20% GA)                                              | 10           | 92.1               | 107.6 |
| [13]      | Paraffin wax (PW)                                             | 10           | 150.4              | 100.0 |
|           | PCM-C-MF-G-3 (3.65% RGO)                                      | 10           | 154.1              | 106.3 |
|           | PCM-C-MF-G3/6 (2.63% RGO)                                     | 10           | 155.3              | 106.0 |
|           | PCM-C-MF-G-3/12 (4.59% RGO)                                   | 10           | 154.1              | 107.4 |
|           | PCM-C-MF-G-3/18 (4.89% RGO)                                   | 10           | 155.5              | 108.7 |
| This      | c-PCM (0.00% RGO)                                             | 10           | 154                | 100.0 |
| study     | PCA2 (2.42% RGO)                                              | 10           | 170                | 113.1 |
|           | PCA3 (2.76% RGO)                                              | 10           | 177                | 118.2 |
|           | PCA4 (2.91% RGO)                                              | 10           | 176                | 117.7 |

Table S4. Thermal properties of different composite PCMs based on GO/RGO aerogel in the literatures.

<sup>a</sup> MH-GP200: Graphene/paraffin aerogel prepared by a modified hydrothermal process.

<sup>b</sup> GOA: Graphene oxide aerogel.

<sup>c</sup>  $G_x$ -GO<sub>y</sub>-CAs: Graphene/GO complex aerogels, in which *x* and *y* represented the weight ratio of graphene and GO, respectively.

<sup>d</sup> EGA: Ethylenediamine-graphene aerogel.

<sup>e</sup> VGA: vitamin C-graphene aerogel.

| Specimen        | $\Delta H_{\rm m}$ | $T_{\rm mo}$ | $T_{\rm mp}$ | $\varDelta H_{c}$ | $T_{\rm co}$ | T <sub>cp</sub> | $\Delta T$ |
|-----------------|--------------------|--------------|--------------|-------------------|--------------|-----------------|------------|
|                 | (J/g)              | (°C)         | (°C)         | (J/g)             | (°C)         | (°C)            | (°C)       |
| PCA3            | 177                | 47.1         | 58.7         | 176               | 35.2         | 27.3            | 11.9       |
| PCA3-100 cycles | 172                | 46.9         | 56.1         | 170               | 34.4         | 27.7            | 12.5       |

Table S5. DSC data of PCA3 before and after 100 thermal cycles.



Fig. S4. Residual mass percentage of PCA3 sample after thermal treatment at different temperatures for 30 min (insert: photographs of PCA3 before and after thermal treatment).



Fig. S5. Voltage output of PCA3-loaded TEG with and without solar light irradiation (200 mW/cm<sup>2</sup>).



Fig. S6. Current output of PCA3-loaded TEG with and without solar light irradiation (200 mW/cm<sup>2</sup>).



Fig. S7. Comparison of electric property (voltage output) of PCA3-loaded TEG in this study and previously reported in similar literatures that can be retrieved.



Fig. S8. Photos of powering several portable electronic gadgets by TEGs: (a) wrist watch, (b) commercial digital calculator.



Fig. S9. Output voltage difference versus time curve of LEDs directly powered by PCA-loaded TEGs (TEG1+TEG2) and blank one.

# Calculation of the thermal-to-electricity conversion maximum efficiency ( $\eta_{TEG}$ ) of PCA3-loaded TEG and blank one

From Fig. 4b and Fig. 4c the hot side temperature of PCA3-loaded TEG and blank control sample can be obtained to be 70.8°C (343.95K) and 51.7°C (324.85K), respectively. Since the solar-thermal-electric conversion experiments was measured at room temperature, the cold side temperature of PCA3-loaded TEG and blank one is the same as the ambient temperature (about 27°C, 300.15K). In addition, the thermoelectric figure of merit (*ZT*) of the commercial TEG device used in this study is about 0.75~0.9. As is well known, most commercial thermoelectric materials at present typically give a limited *ZT* of about 0.8 at room temperature. Therefore, we take *ZT* value as 0.8 to calculate the  $\eta_{TEG}$  of PCA3-loaded TEG and blank one. After taking the above data to the formula (1) in the text, the  $\eta_{TEG}$  of T PCA3-loaded TEG and blank one to blank one, the  $\eta_{TEG}$  of PCA3-loaded TEG was increased by about 61.3%.

#### Calculation of the output power of PCA3-loaded TEG

According to the relevant literatures, there are two commonly used calculation methods for the output power of the TEG, <sup>6-8</sup> and the two calculation equations are as follows:

$$P_{TE} = V_{TE} \times I_{TE} \tag{1}$$

where  $P_{TE}$ ,  $V_{TE}$  and  $I_{TE}$  are the output power, voltage and current of the TEG, respectively. <sup>6,7</sup>

$$P_{TE} = \frac{V_{open}^{2}}{R_{in}}$$
(2)

where  $V_{open}$  and  $R_{in}$  are the open circuit voltage and internal electrical resistance of the TEG, respectively.<sup>8</sup>

Therefore, the output power of the TEG is calculated by Equation (1) to be about 2.13 mW. To verify the calculated value, the Equation (2) was also employed to estimate the output power of the TEG. The  $R_{in}$  of the TEG was measured using a multi-meter, and the measured value is 10.9  $\Omega$ , as shown in Fig. S10. Based on the Equation (2), the corresponding output power is about 1.90 mW.



Fig. S10. Photograph of measuring  $R_{in}$  of the TEG

The calculated results of the two equations are nearly consistent, implying the reasonable estimated value in this manuscript. It should be noted that the output power value calculated by the Equation (2) is smaller than that from the Equation (1), which is due to the characteristic of TEG as current source.

### **Supporting Note 1**

As is well known, <sup>4</sup> the output time of the steady-state current and voltage (i.e. current and voltage generated by TEG during phase change process) was shortened when increasing the simulated sunlight illumination intensity. However, when turning off the light illumination the output time of the steady-state current and voltage remained approximately constant because the shape and content of phase change working substrate in the PCAs were maintained during the whole process. More

importantly, even to increase the simulated sunlight intensity, the steady-state current and voltage with or without the light illumination are essentially unchanged. <sup>4</sup> Hence, the influence of increasing the simulated sunlight intensity on the experimental results as follows: (1) the output time of the steady-state current and voltage was shortened; (2) after turning off the light illumination, however, the output and time of the steadystate current and voltage remained approximately constant in the whole process.

Therefore, in order to shorten the measuring time, the radiation intensity of 200 mW/cm<sup>2</sup> was applied in this manuscript. In fact, the measuring time has exceeded 5000 s with the radiation intensity of 200 mW/cm<sup>2</sup>. In recent studies, the radiation intensity of more than 200 mW/cm<sup>2</sup>, such as 250, <sup>9</sup> 300, <sup>4</sup>, <sup>10</sup> 400, <sup>4</sup>, <sup>11</sup> 800 <sup>4</sup>, <sup>12</sup> and 3000 <sup>13</sup> mW/cm<sup>2</sup>, have been usually applied for the corresponding experimental measuring.

### Reference

[1] R.R. Cao, Y.Z. Wang, S. Chen, N. Han, H.H. Liu, X.X. Zhang, *ACS Appl. Mater*. *Inter*. 2019, **11**, 8982-8991.

[2] R.R. Cao, H.H. Liu, S. Chen, D.F. Pei, J.L. Miao, X.X. Zhang, *Compos. Sci. Technol.* 2017, **149**, 262-268.

[3] Y. Zhang, M.M. Umair, X. Jin, R.W. Lu, S.F. Zhang, B.T. Tang, J. Mater. Chem. A 2019, 7, 8521-8526.

[4] J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu, W. Yang, B.H. Xie, M.B. Yang, *Chem. Eng. J.* 2017, **315**, 481-490.

[5] J. Yang, L.S. Tang, R.Y. Bao, L. Bai, Z.Y. Liu, W. Yang, B.H. Xie, M.B. Yang, J. Mater. Chem. A 2016, 4, 18841-18851.

[6] J. Zhang, Y.M. Xuan, Renew. Energ. 2017, 113, 1551-1558.

[7] F. Rajaee, M.A.V. Rad, A. Kasaeian, O. Mahian, W.-M. Yan, *Energ. Convers. Manage.* 2020, **212**, 112780.

[8] X.H. Luo, Q.G. Guo, Z.C. Tao, Y.J. Liang, Z.J. Liu, *Energ. Convers. Manage.* 2020, **208**, 112459.

[9] X.S. Du, J.N. Xu, S. Deng, Z.L. Du, X. Cheng, H.B. Wang, ACS Sustain. Chem. Eng. 2019, 7, 17682-17690.

[10] Y. Zhang, G.G. Gurzadyan, M.M. Umair, W.T. Wang, R.W. Lu, S.F. Zhang, B.T.

Tang, Chem. Eng. J. 2018, 344, 402-409.

[11] Q.H. Zhao, F.F. He, Q.P. Zhang, J.H. Fan, R. He, K. Zhang, H.J. Yan, W.B. Yang, Sol. Energ. Mat. Sol. C. 2019, 203, 11204.

[12] J. Yang, L-S. Tang, R.-Y. Bao, B. Lu, Z.Y. Liu, B.-H. Xie, N.-B. Yang, W. Yang, Sol. Energ. Mat. Sol. C. 2018, 174, 56-64.

[13] P. Tao, C. Chang, Z. Tong, H. Bao, C.Y. Song, J.B. Wu, W. Shang, T. Deng, *Energy Environ. Sci.* 2019, **12**, 1613-1621.