Electronic Supplementary Information

Building Artificial Solid Electrolyte Interphase with High-Uniformity and Fast Ion Diffusion for Ultralong-Life Sodium Metal Anodes

Qianwen Chen,‡^a Heng He,‡^{ab} Zhen Hou,^a Weiman Zhuang,^a Tianxu Zhang,^a Zongzhao Sun^{ab} and Limin Huang^{*ac}

^aDepartment of Chemistry, Southern University of Science and Technology (SUSTech),

Shenzhen, Guangdong 518055, China

^bSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China

^cGuangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China

‡ Both authors have equal contribution.

*E-mail: huanglm@sustech.edu.cn

Fig. S1 Cross-sectional SEM image of the SnCl₄-Na electrode before cycling and the corresponding EDS elemental mapping of (b) Cl and (c) Sn.

Fig. S2 Optical photo of (a) $SnCl_2$ -Na electrode before cycling. (b, c) SEM images of the $SnCl_2$ -Na electrode before cycling.

Fig. S3. (a) Sn 3d, (b) Cl 2p and (c) O 1s XPS spectra of the SnCl₄-Na electrode after 2 min Ar cluster ion sputtering. (d) Sn 3d, (e) Cl 2p and (f) O 1s XPS spectra of the SnCl₂-Na electrodes after 2 min Ar sputtering. (g) XPS Na 1s spectra of SnCl₄-Na electrodes before cycling. (h) Na 1s and (i) C 1s XPS spectra of SnCl₂-Na electrode before cycling. (sputtering times are shown in the columns).

The Na 1s spectra of SnCl₄-Na electrode at ~1072.1 eV and ~1070.6 eV are assigned to NaCl and Na₂O.^{1, 2} For SnCl₂-Na electrode, the Na 1s spectra are deconvoluted into four peaks at ~1070.9 eV (Na₂O), ~1073.7 eV (Na₂O₂), ~1072.5 eV (NaCl) and ~1071.7 eV (RCH₂ONa and ROCO₂Na),^{3, 4} and peaks at ~284.8 eV, ~286.5 eV and ~288.2 eV in C 1s spectra belong to C-C, C-O and O-C=O.²

Fig. S4 (a) C 1s, (b) O 1s and (c) Na 1s XPS spectra of the DGM-Na electrode.

The XPS spectra of DGM modified Na metal electrode (DGM-Na electrode) are collected in Fig. S4. In O 1s spectra, the reaction between Na and DGM results in the formation of ROCO₂Na (531.1 eV), RCH₂ONa (532.0 eV) and Na₂O (530.0 eV). These constituents (ROCO₂Na and RCH₂ONa) are similar to the organic species of SEI layer on the SnCl₂-Na electrode, demonstrating that the formed artificial protection layer on SnCl₂-Na electrode surface is attributed to the heterogeneous reaction among Na metal, SnCl₂ and DGM solvent.

Fig. S5 XRD patterns of (a) $SnCl_2$ -Na and (b) $SnCl_4$ -Na electrodes.

As shown in Fig. S5, the $SnCl_2$ -Na and $SnCl_4$ -Na electrodes exhibit characteristic diffraction peaks at 34.8° and 37.5° corresponding to the (511) and (521) facets of the Na₁₅Sn₄ alloy (PDF #31-1327).

Fig. S6 (a) Nyquist plots of the SnCl₄-Na electrode before cycling. (b) Relationship between Z' with $\omega^{-1/2}$ in the low-frequency region for the SnCl₄-Na electrode.

The Na⁺ ion diffusion coefficients of inorganics (Na-Sn alloy and NaCl) can be obtained from the oblique lines in the low-frequency regions of the Nyquist plots according to the following Eq. 1 and 2:

$$Z' = R_s + R_{ct} + \sigma w^{-1/2}$$
 (Eq. 1)

$$D = R^{2}T^{2}/(2C^{2}F^{4}S^{2}\sigma^{2})$$
(Eq. 2)

where the Z' is the real part of impedance, R_s is the Ohm resistance, R_{ct} is the charge transfer resistance, σ is the Warburg factor, ω the angular frequency, D is the Na⁺ ion diffusion coefficient, R is the gas constant, T is the absolute temperature, C is the molar concentration of Na⁺ ions in the electrolyte, F is the Faraday's constant, and S is the surface area of the electrodes. As shown in Fig. S6b, the Z' has a linear relationship with $\omega^{-1/2}$ and σ is determined by the slope of the lines, and thus D could be obtained $(1.1 \times 10^{-7} \text{ cm}^2 \text{ s}^{-1})$.

Simulation of different SEI layer components model with thickness 0.5 μ m are shown in the in Fig. S7a, and the lengths of inorganics (Na-Sn alloy and NaCl) and organics (ROCO₂Na and RCH₂ONa) are all designed to be 1 μ m. The boundary conditions between inorganic and organic blocks are defined continuous boundary condition, in which the concentration at the interface satisfies the following equation: $c_{Na}^+=c_{Na}^-$ (+ and - represent the left and right of the boundary).

The Na⁺ concentration in the different protective layer components can be calculated using Fick' s law. To simplify the simulation complexity, the convective mass transport and electro-chemical polarization are ignored.

$$\frac{\partial c}{\partial t} = \nabla \cdot \left(D_i \nabla c \right) \tag{Eq. 3}$$

where c is Na⁺ concentration, and D_i is the Na⁺ ion diffusion coefficient in different components.

According to the previous reports⁵, the conductivities of organics (Na alkyl carbonates) is $^{2}\times10^{-12}$ S cm⁻¹. In addition, the conductivity for all Na alkyl carbonates are identical regardless of chain length at 20 °C. Using following Eq. 4 and 5, a diffusion coefficient of organics (5.2×10⁻¹⁶ cm² s⁻¹) is obtained.

$$\sigma = \mu ne$$
 (Eq. 4)

$$D = \mu k_b T q^{-1}$$
 (Eq. 5)

where the σ is the Na⁺ ion conductivity, μ is the Na⁺ ion mobility, n is the number density of electrons, e is the charge of an electron, D is the Na⁺ ion diffusion coefficient, k_b is the Boltzmann constant, T is the absolute temperature, q is the charge of Na⁺ ion.

In short, the diffusion coefficients of Na⁺ in the organics and inorganics are 5.2×10^{-16} cm² s⁻¹ and 1.1×10^{-7} cm² s⁻¹, respectively.

Fig. S8 SEM images of (a, d) the Na, (b, e) $SnCl_2$ -Na and (c, f) $SnCl_4$ -Na electrodes after 100 cycles at 2 mA cm⁻² with a cycling capacity of 1 mAh cm⁻².

Fig. S9 (a) SEM images of the SnCl₂-Na electrode after 100 cycles at 2 mA cm⁻² with a cycling capacity of 1 mAh cm⁻², and the corresponding EDX elemental mappings of (b) Cl and (c) Sn.

Fig. S10 Cycling performance of the symmetric cells with the Na and $SnCl_4$ -Na electrodes with cycling capacities of 5 mAh cm⁻² at 5 mA cm⁻².

Fig. S11 Coulombic efficiency of Na-FeS₂ full cells using Na and SnCl₄-Na as anodes and FeS₂ as cathodes at 0.2, 0.5, 1, 2 and 0.2 A g^{-1} .

Table S1. Summary of cycle performance of Na plating/stripping behaviors. (Theelectrolyte concentration is 1M)

Materials	Capacity (mAh/cm ²)	Current density (mA/cm²)	Cycles	Time (h)	Electrolyte	Refs
Na-Sn alloy/Na ₂ O	1	1	350	700	$NaCF_3SO_3$ in	6
		2	500	500	diglyme	0
Na/NSCNT	1	1	250	500	$NaSO_3CF_3$ in	7
					diglyme	
PhS ₂ Na ₂ -rich	1	1	400	800	NaPF ₆ in EC/PC	8
protection layer		5	700	280		
CNT/Na	1	0.5	200	800	NaClO ₄ in EC/PC	9
MOF/Cu	1	1	300	600	NaClO ₄ in	10
					EC/DMC	
Zn _{SA} -N-C	1	1	150	300	NaClO ₄ in	11
					EC/DMC	
Carbon felt	1	1	550	1100	NaPF ₆ in diglyme	12
		2	350	350		±£
NaAsF ₆ additive	1	0.5	87	350	NaTFSI in FEC	13
	0.5	0.25	137	550		
Na/CNF	1	1	1000	2000	NaPF ₆ in diglyme	14
SbF ₃ addicitive	0.5	0.5	500	1000	NaFSI in DME	15
Nal SEI	0.75	0.25	83	500	$NaCF_3SO_3$ in	16
					diglyme	10
NaPS layers	1	135 270 1 NaPEc in FC/PC	NaPEc in EC/PC	17		
	3	-	41	250		±/
Sn-Na alloy	1	0.25	125	1000	NaPF ₆ in EC/PC	18
NaBr interphase	0.25	0.5	250	250	NaPF ₆ in EC/PC	19
Al ₂ O ₃ -PVDF-HFP	1	0.5	100	400	NaClO₄ in EC/PC	20
coating						_
SnCl₄-Na electrode	1	2	4500	4500	NaPF ₆ in – diglyme	
	3		1333	4000		This
	5		600	3000		work
	1	5	7000	2800		
	5		750	1500		

Reference

- 1. Z. W. Seh, J. Sun, Y. Sun and Y. Cui, ACS Cent. Sci., 2015, 1, 449-455.
- 2. X. Zheng, H. Fu, C. Hu, H. Xu, Y. Huang, J. Wen, H. Sun, W. Luo and Y. Huang, *J. Phys. Chem. Lett.*, 2019, **10**, 707-714.
- 3. K. Li, J. Zhang, D. Lin, D. W. Wang, B. Li, W. Lv, S. Sun, Y. B. He, F. Kang, Q. H. Yang, L. Zhou and T. Y. Zhang, *Nat. Commun.*, 2019, **10**, 725.
- 4. L. L. Marciniuk, P. Hammer, H. O. Pastore, U. Schuchardt and D. Cardoso, *Fuel*, 2014, **118**, 48-54.
- L. Schafzahl, H. Ehmann, M. Kriechbaum, J. Sattelkow, T. Ganner, H. Plank, M. Wilkening and S. A. Freunberger, *Chem. Mater.*, 2018, **30**, 3338-3345.
- X. Zheng, W. Yang, Z. Wang, L. Huang, S. Geng, J. Wen, W. Luo and Y. Huang, *Nano Energy*, 2020, 69, 104387.
- B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P. H. L. Notten and G. Wang, *Adv. Mater.*, 2018, **30**, 1801334.
- 8. M. Zhu, G. Wang, X. Liu, B. Guo, G. Xu, Z. Huang, M. Wu, H. K. Liu, S. X. Dou and C. Wu, *Angew. Chem. Int. Ed.*, 2020, **59**, 6596-6600.
- 9. Y.-J. Kim, J. Lee, S. Yuk, H. Noh, H. Chu, H. Kwack, S. Kim, M.-H. Ryou and H.-T. Kim, *J. Power Sources*, 2019, **438**, 227005.
- 10. J. Qian, Y. Li, M. Zhang, R. Luo, F. Wang, Y. Ye, Y. Xing, W. Li, W. Qu, L. Wang, L. Li, Y. Li, F. Wu and R. Chen, *Nano Energy*, 2019, **60**, 866-874.
- 11. T. Yang, T. Qian, Y. Sun, J. Zhong, F. Rosei and C. Yan, *Nano Lett.*, 2019, **19**, 7827-7835.
- 12. J. Zhang, W. Wang, R. Shi, W. Wang, S. Wang, F. Kang and B. Li, *Carbon*, 2019, **155**, 50-55.
- 13. S. Wang, W. Cai, Z. Sun, F. Huang, Y. Jie, Y. Liu, Y. Chen, B. Peng, R. Cao, G. Zhang and S. Jiao, *Chem. Commun.*, 2019, **55**, 14375-14378.
- 14. J. Sun, M. Zhang, P. Ju, Y. Hu, X. Chen, W. Wang and C. Chen, *Energy Technology*, 2020, **8**, 1901250.
- 15. W. Fang, H. Jiang, Y. Zheng, H. Zheng, X. Liang, Y. Sun, C. Chen and H. Xiang, *J. Power Sources*, 2020, **455**, 227956.
- 16. H. Tian, H. Shao, Y. Chen, X. Fang, P. Xiong, B. Sun, P. H. L. Notten and G. Wang, *Nano Energy*, 2019, **57**, 692-702.
- Y. Zhao, J. Liang, Q. Sun, Lyudmila V. Goncharova, J. Wang, C. Wang, K. R. Adair, X. Li, F. Zhao,
 Y. Sun, R. Li and X. Sun, J. Mater. Chem. A, 2019, 7, 4119-4125.
- S. Choudhury, S. Wei, Y. Ozhabes, D. Gunceler, M. J. Zachman, Z. Tu, J. H. Shin, P. Nath, A. Agrawal, L. F. Kourkoutis, T. A. Arias and L. A. Archer, *Nat. Commun.*, 2017, 8, 898.
- 19. Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis and L. A. Archer, *Nat. Energy*, 2018, **3**, 310-316.
- 20. Y. J. Kim, H. Lee, H. Noh, J. Lee, S. Kim, M. H. Ryou, Y. M. Lee and H. T. Kim, *ACS Appl. Mater. Interfaces*, 2017, **9**, 6000-6006.