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Calibration of the amount of isotope oxygen 

In our PIE system, the isotopic gas (He–10% 36O2) for pulses was pre-mixed and stored in a large-
volume (> 500 mL) reservoir chamber connecting to a pulse injector and a circulation pump. 
Because a 4-way valve was used to inject a 1 mL pulse, a small amount (1 mL) of the base gas (N2–
10% 32O2) is introduced into the reservoir chamber instead of the pulse. It is, therefore, necessary to 
calibrate the actual amount of isotope oxygen in each pulse injected during PIE measurements. 
Assuming the same amount of base gas get into the reservoir chamber every time, QMS peak area 
of 36O2 corresponding the amount of isotope oxygen at n-th pulse, A(n) is expressed by the 
following formula: 

 

where r is the dilution rate of isotope oxygen. The actual r value was determined by curve fitting, as 
shown in Fig. S1. Before starting PIE measurements at high temperature, the amount of isotope in a 
pulse was measured at room temperature to determine A1. The amount of isotope in a pulse injected 
at each temperature during PIE measurements was calibrated using the formula and the determined 
r value above. The small temperature dependent changes in f in (indicated by the dashed lines) in 
Fig. 2 and Fig. S4 are due to this calibration process. 

 

Fig. S1   The QMS peak area of 36O2 in an isotope pulse as a function of the number of injection 
pulses. 

An = rn−1A1
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XRD patterns 

Fig. S2   XRD patterns of Co–Fe-based spinel-type oxides. The lattice constant is plotted as a 
function of the Fe fraction in the inset. 

Fig. S3   XRD patterns of Co–Mg-based rock salt-type oxides. The lattice constant is plotted as a 
function of the Mg fraction in the inset. 
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ICP-MS 

The amount of impurity in some samples was evaluated by ICP-MS (Agilent 8800). 2 mL of 
hydrochloric acid and 2 mL of nitric acid was added to approximately 10 mg of the powder sample. 
The sample was then decomposed at 170 °C for five minutes and 210 °C for 55 minutes using a 
microwave decomposer. This solution was used for ICP-MS analysis. The cation molar fraction of 
samples and mass concentration of impurities (Al, Si, Y and Zr) are summarized in Tab. S1. The 
presence of Zr, the major impurity, can be attributed to the planetary ball-mill apparatus made of 
yttria-stabilized zirconia. 

Tab. S1   Composition of the samples analyzed by ICP-MS. 

Isotope fraction 

Fig. S4   Isotope fractions of Co0.4Mg0.6O as a function of temperature. 
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Cation molar fraction Impurity/ppm
Sample Co Fe or Mg Al Si Y Zr

(Co0.667Fe0.333)3O4 0.672 0.326 128 392 73 1168

(Co0.333Fe0.667)3O4 0.343 0.654 231 594 48 637

Co0.5Mg0.5O 0.509 0.487 411 686 304 3731

Co0.2Mg0.8O 0.203 0.793 200 432 436 5207
<latexit sha1_base64="t7nQpvvB/TAvm97v5DW1vXQCCe4="></latexit>



Electrical conductivity 

Electrical conductivity was evaluated by four-terminal method and impedance measurements for 
CoFe2O4 and Co1-yMgyO (y = 0.5 and 0.8), respectively. CoFe2O4 and Co1-yMgyO were sintered at 
1300 °C for 12 hours and 1400 °C for 10 hours, respectively. These sintered pellets were polished 
and then cut into rectangular shapes for CoFe2O4. The Pt paste was baked at 900 °C on these 
samples to make electrodes. The temperature dependence of the electrical conductivity evaluated in 
air is shown in Fig. S5. 

Fig. S5   Arrhenius-type plot of electrical conductivity of CoFe2O4 and Co1-yMgyO (y = 0.5 and 0.8). 

S5

-8

-6

-4

-2

0

lo
g(
σ

 / 
S
·c

m
)

1.81.61.41.21.00.8

1000/T / K-1

800 700 600 500 400 300
Temperature,T / ºC

 CoFe2O4
 Co0.2Mg0.8O
 Co0.5Mg0.5O



Dissociative oxygen adsorption rate 

Fig. S6   Dissociative adsorption rates of Co–Fe-based and Co–Mg-based oxides at 600 °C and 
percolation probability as a function of a normalized nominal Co surface concentration (linear 
scale). 

Fig. S7   Dissociative adsorption rates of Co–Fe-based and Co–Mg-based oxides at 600 °C as a 
function of Fe or Mg fraction. 
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Activation energy 

Fig. S8   Activation energy of oxygen dissociation reaction as a function of a normalized nominal 
Co surface concentration. 
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