Electronic Supplementary Information

Guiding Lithium Deposition in Tent-like Nitrogen-doped Porous Carbon Microcavities for Stable Lithium Metal Anodes

He Gan^a, Jing Wu^a, Hui Chen^{a, b}, Run Li^{a, b}*, Hongbo Liu^{a, b}*

^a College of Material Science and Engineering, Hunan University, Changsha, Hunan,

410082, China

^b Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, China

Email: lirun@hnu.edu.cn; hndxlhb@163.com

Fig. S1 Monodisperse SiO_2 microspheres prepared by modified Stöber method. SEM

image of SiO_2 (a) and corresponding size distribution (b).

Fig.S2 SEM images of CC (a), (c) and NPC@CC (b), (d). (c) and (d) are magnified SEM images of CC and NPC@CC, respectively.

Fig. S3 Resistance measurement of CC (a), NPC@CC (b) and NPCM@CC (c) host with distance of 14 mm.

Fig.S4 SEM images of NPCM precursor gel@CC (a-c) and NPCM/SiO₂@CC (d-f). (bc) and (e-f) are magnified SEM images. The blue circles in (f) indicate small cracks and holes at the top of carbon microcavities.

Fig.S5 SEM images of NPCM@CC-5 and NPCM@CC-20 prepared with 5 mg ml⁻¹ (a, b) and 20 mg ml⁻¹ (c, d) SiO₂ template, respectively. (b) and (d) are magnified SEM images.

Samples	BET specific surface	Pore volume (10 ⁻³	N content	T /T
	area (m 2 g $^{-1}$)	area (m ² g ⁻¹) * cm ³ g ⁻¹) (atom %)		I_{G}/I_{D}
CC	0.4	0.44	0	1.04
NPC@CC	11.8	7.3	3.30	1.06
NPCM@CC	10.8	6.7	4.01	1.10

 Table S1 Basic properties of three different host materials.

Fig. S6 (a) N_2 adsorption-desorption isotherms of CC and NPC@CC. XRD patterns

(b) and Raman spectra (c) of CC, NPC@CC, and NPCM@CC.

Fig. S7 XPS spectra of NPCM@CC (a) and NPC@CC (b). High-resolution C 1s spectrum of NPCM@CC (c) and NPC@CC (d). (e) High-resolution N 1s spectrum of NPC@CC

Fig. S8 High-resolution SEM images of NPCM@CC electrode and corresponding size distribution of carbon microcavities when it lithiated to 0 (a, b), 3 (c, d), 5 (e, f), and 8 mAh cm⁻² (g, f), respectively.

Fig. S9 The initial discharge curve (a) and its voltage dip in the range of -0.06-0.01 V (b) of CC, NPC@CC, and NPCM@CC.

Fig. S10 SEM images of CC (a), (c) and NPC@CC (b), (d) after inserting/plating 5 mA

h cm $^{-2}$ Li. (c) and (d) are magnified SEM images.

Fig. S11 SEM images of NPCM@CC after 50 (a-c) and 100 (d-f) cycles at 2 mA cm⁻² and 1 mAh cm⁻². (b-c) and (e-f) are magnified SEM images of NPCM@CC.

Fig. S12 The nucleation overpotential curves of NPCM@CC anode at 1, 50 and 150

cycles.

Fig. S13 Comparison of CE of the copper foil, pristine CC, NPC@CC and NPCM@CC electrodes with an areal capacity of 8.0 mA h cm⁻² at a current density of 0.5 mA cm⁻².

Fig. S14 The Nyquist plot of impedance curves for bare Li, CC-Li, NPC@CC-Li, and NPCM@CC-Li in symmetrical cells before (a) and after (b) 10 cycles with a current density of 1 mA cm⁻² and areal capacity of 1 mAh cm⁻². (c) The equivalent circuit of these cells.

Table S2 Fitted	I EIS	parameters
-----------------	-------	------------

	Fresh cells				After 10 cycles		
	$R_s(\Omega)$	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$	$R_s(\Omega)$	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$	
Bare Li	1.45	50.65	5.37	2.93	11.21	13.31	
CC-Li	1.14	17.38	3.09	1.68	3.16	8.16	
NPC@CC-Li	1.23	13.15	2.50	1.62	2.13	8.47	
NPCM@CC-Li	1.79	7.96	2.36	1.75	1.08	5.63	

hosts	Current (mA cm ⁻²)	Capacity (mAh cm ⁻²)	CE (%)	Cycle number	Ref.
	0.5	1	95	100	_
rGO infiltrated Ni foam	1	1	95	100	1
	1	1	98	200	
Nitrogen-doped graphene	1	2	98	50	2
CNT sponge	1	2	98.5	90	3
Graphitized carbon fibers	0.5	8	98	50	4
CNTs Modified Carbon Cloth	1	1	99	100	5
X7.1 1 1 1	1	1	98	120	6
N-doped carbon rod array	1	2	97	80	
	1	1	99	250	7
3D CN I nost on Cu Ioli	1	5	/	30	/
2D floor its small sug	2	1	98	150	0
3D fluoride graphene	1	2	/	88	8
	0.5	4	99.1	150	TL:-
NPCM@CC	0.5	8	98.1	57	1 1115
	1	4	99.0	90	WORK

 Table S3 Comparison of the Coulombic efficiency of Li metal anodes with different carbon-based hosts.

h s set s	Current	Capacity	Overpotential	lifespan	D	
hosts	(mA cm ⁻²)	(mAh cm ⁻²)	(mV)	(h)	Ref.	
rGO infiltrated Ni foam	0.2	0.8	/	100	1	
Nitrogen-doped graphene	1	0.042	40	200	2	
Carabitized each an filmer	1	1	20	1000	4	
Graphitized carbon fibers	2	1	/	300	4	
NT 1 1 1 1	1	1	12	1350	ſ	
N-doped carbon rod array	2	1	20	620	6	
3D CNT host on Cu foil	1	1	15	200	7	
	0.5	1	10	800	8	
3D fluoride graphene	1	2	50	350		
CNTs Modified Carbon	1	1	18	500	0	
Cloth	2	1	23	500	9	
Carbon cloth-based				100	10	
lithium	1	1	46	400	10	
	1	1	9	4200	This	
NPCM(aCC	2	1	10	1200	work	

 Table S4 Comparison of galvanostatic cycling performance of symmetric cells with

 different Carbon-based hosts for Li metal anodes.

References

- 1 H. Yan, C. Shen, K. Yuan, K. Zhang, X. Liu, J.-G. Wang and K. Xie, *ACS Sustain. Chem. Eng.*, 2018, **6**, 4776-4783.
- 2 R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan and Q. Zhang, *Angew. Chem. Int. Ed.*, 2017, **56**, 7764-7768.
- 3 G. Yang, Y. Li, Y. Tong, J. Qiu, S. Liu, S. Zhang, Z. Guan, B. Xu, Z. Wang and L. Chen, *Nano Lett.*, 2019, **19**, 494-499.
- 4 T. T. Zuo, X. W. Wu, C. P. Yang, Y. X. Yin, H. Ye, N. W. Li and Y. G. Guo, *Adv. Mater.*, 2017, **29**, 1700389.
- 5 F. Liu, R. Xu, Z. Hu, S. Ye, S. Zeng, Y. Yao, S. Li and Y. Yu, Small, 2019, 15, 1803734.
- 6 L. Chen, H. Chen, Z. Wang, X. Gong, X. Chen, M. Wang and S. Jiao, *Chem. Eng. J.*, 2019, **363**, 270-277.
- 7 F. Shen, F. Zhang, Y. Zheng, Z. Fan, Z. Li, Z. Sun, Y. Xuan, B. Zhao, Z. Lin, X. Gui, X. Han, Y. Cheng and C. Niu, *Energy Storage Mater.*, 2018, **13**, 323-328.
- 8 Z. Li, X. Li, L. Zhou, Z. Xiao, S. Zhou, X. Zhang, L. Li and L. Zhi, *Nano Energy*, 2018, 49, 179-185.
- 9 F. Liu, R. Xu, Z. Hu, S. Ye, S. Zeng, Y. Yao, S. Li and Y. Yu, Small, 2019, 15, 1803734.
- 10 Y. Zhou, Y. Han, H. Zhang, D. Sui, Z. Sun, P. Xiao, X. Wang, Y. Ma and Y. Chen, *Energy Storage Mater.*, 2018, **14**, 222-229.