Supplementary information

High-energy O3-Na_{1-2x}Ca_x[Ni_{0.5}Mn_{0.5}]O₂ cathode for long-life sodium-ion batteries

Tae-Yeon Yu,^a Jongsoon Kim,^b Jang-Yeon Hwang,^c Hyungsub Kim,^d Geumjae Han,^a Hun-Gi Jung,^e and Yang-Kook Sun^{*a}

^aDepartment of Energy Engineering, Hanyang University, Seoul 04763, Republic of Korea

^bDepartment of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea

^cDepartment of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

^dKorea Atomic Energy Research Institute, Daejeon 34507, Republic of Korea

^eCenter for Energy Storage Research, Green City Technology Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

*Corresponding author: yksun@hanyang.ac.kr

Fig. S1 SEM images of a) the $[Ni_{0.5}Mn_{0.5}](OH)_2$ precursor, b) $Na[Ni_{0.5}Mn_{0.5}]O_2$, and c) Ca-substituted $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes at low magnification.

Fig. S2 Comparison of XRD patterns among various $Na_{1-2x}Ca_x[Ni_{0.5}Mn_{0.5}]O_2$ (x = 0, 0.01, 0.02 and 0.03) cathodes.

Fig. S3 Comparison of (003) XRD peak between pristine $O3-Na[Ni_{0.5}Mn_{0.5}]O_2$ and $O3-Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes.

Fig. S4 Comparison of TEM images between pristine $O3-Na[Ni_{0.5}Mn_{0.5}]O_2$ and $O3-Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes.

Fig. S5 dQ dV⁻¹ versus V plots derived from consecutive cycling test at different cycle number for a) the $Na[Ni_{0.5}Mn_{0.5}]O_2$ and b) $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes. Corresponding charge-discharge voltage profiles for c) $Na[Ni_{0.5}Mn_{0.5}]O_2$ and d) $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes.

Fig. S6 Electrochemical performances of $Na_{1-2x}Ca_x[Ni_{0.5}Mn_{0.5}]O_2$ cathodes (x = 0, 0.005, 0.008 and 0.01) a) Chargedischarge profile at a current density of 15 mA g⁻¹. b) Cycling stability using 2032 coin-type cell at 75 mA g⁻¹, 30 °C.

Fig. S7 CV plots at different cycle number for a) Na[Ni_{0.5}Mn_{0.5}]O₂ and b) Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O₂ cathodes.

Fig. S8 *Ex-situ* XANES spectra at the Mn-K absorption edge of a) $Na[Ni_{0.5}Mn_{0.5}]O_2$ and b) $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes with Mn_2O_3 and MnO_2 spectra as the reference oxides.

Fig. S9 The integrated spin moments of (a) Ni and (b) Mn ions among O3-Na₁[Ni_{0.5}Mn_{0.5}]O₂, P3-Na_{0.5}[Ni_{0.5}Mn_{0.5}]O₂ and O3-Na₀[Ni_{0.5}Mn_{0.5}]O₂.

Fig. S10 Indexed *ex-situ* XRD patterns collected at several charge states of a) $Na[Ni_{0.5}Mn_{0.5}]O_2$ and b) $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ cathodes under a current density of 75 mA g⁻¹. The hydrated phase marked by *. The broad peak observed at ~25° is related to a Mylar film.

Fig. S11 Comparison of the indexed XRD patterns between $Na_x[Ni_{0.5}Mn_{0.5}]O_2$ and $Na_xCa_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ (x is close to 0) electrodes charged to 4.3 V (vs. Na^+/Na). The hydrated phase marked by *. The broad peak observed at ~25° is related to a Mylar film.

Fig. S12 (a) Comparison of the indexed XRD patterns between fully charged pristine $Na[Ni_{0.5}Mn_{0.5}]O_2$ and fully charged $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$, and refined XRD patterns of (b) fully charged pristine $Na[Ni_{0.5}Mn_{0.5}]O_2$ and (c) fully charged $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$.

Fig. S13 Indexed *ex-situ* XRD patterns collected after 100 cycling of Na[Ni_{0.5}Mn_{0.5}]O₂ and Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O₂ cathodes at 2.0-4.3V; Green line: Hex. O3 phase, Yellow line: Mon. O3 phase, Red line: Hex. P3 phase.

Fig. S14 Electrochemical performances of Na[Ni_{0.5}Mn_{0.5}]O₂ and Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O₂ cathodes in the voltage range of 2.0-4.0 V. a) Charge-discharge profile at a current density of 15 mA g⁻¹. b) Cycling stability at 75 mA g⁻¹, 30 °C.

Fig. S15 Differential scanning calorimetry (DSC) data for de-sodiated $Na_x[Ni_{0.5}Mn_{0.5}]O_2$ and $Na_xCa_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$ (x is close to 0) cathodes.

Fig. S16 Evolution of XRD patterns of a) Na[Ni_{0.5}Mn_{0.5}]O₂ and b) Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O₂ cathodes within 1 week storage in relative humidity \approx 55% environment. Na₂CO₃•nH₂O was indexed by \downarrow in XRD patterns, which was probably formed by the reaction of Na⁺ ion diffused out of the structure with humid air. The transformed monoclinic phase marked by *.

Fig. S17 Electrochemical performances of Na[Ni_{0.5}Mn_{0.5}]O₂ and Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O₂ cathodes after 1 week of exposure to air with Relative Humidity \approx 55%. a) Charge-discharge profile at a current density of 15 mA g⁻¹ and dQ dV⁻¹ versus V plots (inset figure). For the exposure Na[Ni_{0.5}Mn_{0.5}]O₂, there is a new reaction marked by \downarrow due to the decomposition of Na₂CO₃. b) Cycling test at 75 mA g⁻¹, 30 °C.

Metal stoichiometry determined by ICP-OES					
Sample	Na	Са	Ni	Mn	
$Na[Ni_{0.5}Mn_{0.5}]O_2$	0.9975	0.0000	0.4943	0.5057	
$Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$	0.9803	0.0099	0.4989	0.5011	
$Na_{0.96}Ca_{0.02}[Ni_{0.5}Mn_{0.5}]O_2$	0.9512	0.0194	0.4936	0.4964	
Na _{0.94} Ca _{0.03} [Ni _{0.5} Mn _{0.5}]O ₂	0.9295	0.0278	0.4975	0.4927	

Table S1. ICP-OES results of $Na_{1-2x}Ca_x[Ni_{0.5}Mn_{0.5}]O_2$ (x = 0 – 0.03) series.

Table S2. Lattice parameters deduced from the XRD Rietveld refinement within the $R^{3}m$ space group for Na[Ni_{0.5}Mn_{0.5}]O₂.

Na[Ni ₀	_{.5} Mn _{0.5}]O ₂
--------------------	---

Lattice parameters		a (Å) = 2.96123 (3), c (Å) = 15.9244 (2)				
R _p = 6.85 %	R _{wp} =	8.79 %	R _I = 3.55 %	R _F	R _F = 2.11 %	
Site	x	у	Z	B _{iso}	Осс	
Na1	0	0	0	1.52 (2)	1	
Ni1	0	0	0.5	0.58 (1)	0.5	
Mn1	0	0	0.5	0.58 (1)	0.5	
01	0	0	0.23177 (5)	0.71 (2)	1	

Table S3. Lattice parameters deduced from the XRD Rietveld refinement within the R^3m space group for $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$.

Lattice parameters			<i>a</i> (Å) = 2.96282 (2) <i>, c</i> (Å) = 15.9152 (2)		
R _p = 6.58 %	R _{wp} =	= 8.82 %	R _I = 2.98 % R _F =		= = 1.85 %
Site	x	У	Z	B _{iso}	Осс
Na1	0	0	0	1.11 (2)	0.98
Cal	0	0	0	1.11 (2)	0.01
Ni1	0	0	0.5	0.34 (1)	0.5
Mn1	0	0	0.5	0.34 (1)	0.5
01	0	0	0.23226 (4)	0.59 (2)	1

 $Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2$

	Na[Ni _{0.5} Mn _{0.5}]O ₂		Na _{0.98} Ca _{0.01} [Ni _{0.5} Mn _{0.5}]O ₂		
	03′	03"	03′	03"	
<i>c</i> -lattice parameter (Å)	17.020 (3)	13.2919 (4)	17.018 (2)	13.2982 (3)	
Phase- proportion (%)	12.24 (5)	87.76 (13)	19.48 (6)	80.52 (11)	

 $\label{eq:stable} \textbf{Table S4.} Rietveld refinement Results on the XRD patterns of fully charged pristine Na[Ni_{0.5}Mn_{0.5}]O_2 and fully charged Na_{0.98}Ca_{0.01}[Ni_{0.5}Mn_{0.5}]O_2.$