Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Metal-Organic Framework-Derived Pseudocapacitive Titanium Oxide/Carbon Core/Shell Heterostructure for High Performance Potassium Ion Hybrid Capacitor

Hongxia Li,^{a,b,c} Jiangtao Chen,^a Li Zhang,^a Kunjie Wang,^c Xu Zhang,^a Bingjun Yang,^{a,b} Lingyang Liu,^{a,b} Weisheng Liu,^d Xingbin Yan^{*,a,b,e}

^a Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^b Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China

^d College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.

^e Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116000, China

Fig. S1. Morphology and structure characterization: (a) SEM image of MIL-125 (Ti), (b) SEM image of MIL-125 (Ti)@PZS, (c) XRD patterns of MIL-125 (Ti) and MIL-125 (Ti)@PZS. Nitrogen absorption/desorption isotherm curves of (d) MIL-125 (Ti), (e) MIL-125 (Ti)@PZS. (f) The corresponding pore size distribution curves.

Fig. S2 Morphology characterization: SEM images of (a) $TiO_2/C@NPSC-600$, (b) $TiO_2/C@NPSC-800$ and (c) $TiO_2/C-700$. TEM images of (d, e) MIL-125(Ti)@PZS, (f, g, i) $TiO_2/C@NPSC-700$ and (h) $TiO_2/C-700$.

Fig. S3 (a) Raman spectra and (b) XPS full surveys of $TiO_2/C@NPSC-x$. (c) O 1s spectra, (d) C 1s spectra, (e) TG curve of $TiO_2/C@NPSC-700$ in air. (f) TG curves of MIL-125 (Ti)@PZS and MIL-125 (Ti) tested in N₂ atmosphere (as shown in TG curves, before 500 °C, the weight loss trends were similar in both MIL-125 (Ti) and MIL-125 (Ti)@PZS because only the decomposition of MOFs precursor was occurred. In comparison, the PZS layer decomposition resulted in the discrepancy of TG curves between MIL-125 (Ti)@PZS and MIL-125 (Ti) when the annealing temperature was higher than 500 °C).

Fig. S4 (a) CV curve of acetylene carbon black at scan rate of 0.1 mV s⁻¹. (b) The cycling performance of TiO₂/C@NPSC-x compared with TiO₂/C-x (prepared by pyrolysis of MIL-125 (Ti)) at 0.1 A g⁻¹. (c) The comparison of electrochemical performance of TiO₂/C@NPSC-700, TiO₂/C-700, anatase TiO₂ and NPSC at 0.1 A g⁻¹. in where, TiO₂ was prepared by pyrolyzing of TiO₂/C@NPSC-700 at 500 °C in air, NPSC (N, P, S-doped carbon) was derived from pyrolysis of PZS polymer. (d) rate capability at different current densities ranging from 0.03 to 2 A g⁻¹ of TiO₂/C@NPSC-700 and TiO₂/C-700. (e) The cycling performance of TiO₂/C@NPSC-x at 0.5 A g⁻¹.

Fig. S5 Morphology characterization of $TiO_2/C@NPSC-700$ electrode after 2000 cycles at 1 A g⁻¹: (a, b) SEM images, (c, d) TEM images.

Fig. S6 Ti 2p spectra of TiO₂/C@NPSC-700 electrode at different charge/discharge states.

Fig. S7 HRTEM images of $TiO_2/C@NPSC-700$ electrode: (a) discarged to 0.01 V, (b) charged to 3 V.

Fig. S8 The capacitive contribution at scan rate of (a) 0.1 mV s⁻¹ and (b) 1 mV s⁻¹.

Fig. S9 (a) Variation of cell voltage during single titration plotted against $\tau^{1/2}$ for TiO₂/C@NPSC-700 anode, (b) Scheme for voltage response with time during a single constant current pulse. (c) GITT curves of TiO₂/C-700, (d) reaction resistance of TiO₂/C@NPSC-700 anode during GITT measurement.

Fig. S10 EIS spectra of $TiO_2/C@NPSC-700$ anode at (a) different discharge states, (b) different charge states and (c) different cycles.

Fig. S11 Electrochemical performance of ZDPC electrode: (a) CV curves at different scan rates ranging from 10 to 50 mV s⁻¹ under 1.5-4.2 V versus K/K⁺, (b) GCD curves under different current densities ranging from 0.5 to 10 A g⁻¹, (c) the rate capability, and (d) the cycling performance and CE for 300 cycles at 1 A g⁻¹.

Fig. S12 Electrochemical performance of as-assembled PIHCs with different mass ratios of anode to cathode: (a) CV curves and (b) GCD profiles of PIHC with the mass ratio of 2:1; (c) CV curves and (d) GCD profiles of PIHC with the mass ratio of 1:1; (e) CV curves and (f) GCD profiles of PIHC with the mass ratio of 1:1.5.

Fig. S13 The GCD profiles of the initial 10 cycles and the final 10 cycles.

Fig. S14 (a-b) SEM images of TiO₂/C@NPSC-700 anode after 10 000 cycles in full-cell. (c-d) TEM images of ZDPC cathode after 10 000 cycles in full-cell.

Samples	S _{BET} (m² g ⁻¹)	Pore volume (cm³ g ⁻¹)	Pore size distribution (nm)	crystalline phases
MIL-125 (Ti)	1158.9	0.592	1.48-2.73, 7.40-252.57	
MIL-125 (Ti)@PZS	298.5	0.173	20.07-233.91	
TiO ₂ /C-700	275.8	0.171	1.48-5.04, 12.65-252.57	anatase
TiO ₂ /C@NPSC-600	51.7	0.041	1.48-2.73	anatase
TiO ₂ /C@NPSC-700	170.4	0.149	1.48-18.58	anatase
TiO ₂ /C@NPSC-800	274.5	0.212	1.48-11.72	anatase

 Table S1. Physicochemical properties of different samples.

Samples	Element content (at%)					
Samples	С	Ν	0	Р	S	Ti
TiO₂/C@NPSC-600	69.95	1.82	18.89	6.55	1.02	1.77
TiO₂/C@NPSC-700	73.63	1.63	16.38	4.42	1.15	2.79
TiO₂/C@NPSC-800	77.55	1	14.56	3.12	0.55	3.22

Table S2. Composition date obtained from XPS investigation for the $TiO_2/C@NPSC-x$ samples.

Table S3. Comparison of the electrochemical performances of the as-prepared $TiO_2/C@NPSC-700$ anode with other anode materials for PIBs reported previously.

Electrode	Rate Capability	Capacity Retention	ICE	
Electrode	(mA h g ⁻¹)/(A g ⁻¹)	(%/cycles/current density)	ICE	
TiO₂/C@NPSC (this work)	309.5 mA h g ⁻¹ /0.05 A g ⁻¹ 261 mA h g ⁻¹ /0.1 A g ⁻¹ 221.8 mA h g ⁻¹ /0.2 A g ⁻¹ 177.3 mA h g ⁻¹ /0.5 A g ⁻¹ 142.4 mA h g ⁻¹ /1 A g ⁻¹ 114.3 mA h g ⁻¹ /2 A g ⁻¹	85%/5000 cycles/1 A g ⁻¹	46.9%	
VSe ₂ nanosheets ¹	374 mA h g ⁻¹ /0.1 A g ⁻¹ 350 mA h g ⁻¹ /0.2 A g ⁻¹ 334 mA h g ⁻¹ /0.5 A g ⁻¹ 269 mA h g ⁻¹ /1 A g ⁻¹ 172 mA h g ⁻¹ /2 A g ⁻¹	87.3%/500 cycles/2 A g⁻¹	69.1%	
VS ₂ ²	380 mA h g ⁻¹ /0.1 A g ⁻¹ 250 mA h g ⁻¹ /1 A g ⁻¹ 100 mA h g ⁻¹ /2 A g ⁻¹	No decay/100 cycles/0.5 A g ⁻¹	-	
TiO ₂ /RGO ³	354.3 mA h g ⁻¹ /0.05 A g ⁻¹ 282.2 mA h g ⁻¹ /0.1 A g ⁻¹ 220.9 mA h g ⁻¹ /0.2 A g ⁻¹ 151.7 mA h g ⁻¹ /0.5 A g ⁻¹ 107.1 mA h g ⁻¹ /1 A g ⁻¹	78%/200 cycles/0.2 A g ⁻¹ 85%/1000 cycles/1 A g ⁻¹	35%	
TiO _x N _y /C ⁴	127 mA h g ⁻¹ /0.2 A g ⁻¹ 102 mA h g ⁻¹ /0.4 A g ⁻¹ 84 mA h g ⁻¹ /0.8 A g ⁻¹ 72 mA h g ⁻¹ /1.6 A g ⁻¹	-/1250 cycles/0.2 A g ⁻¹	_	
PMC (MoSe₂/C)⁵	382 mA h g ⁻¹ /0.2 A g ⁻¹ 342 mA h g ⁻¹ /0.4 A g ⁻¹ 304 mA h g ⁻¹ /0.6 A g ⁻¹ 277 mA h g ⁻¹ /0.8 A g ⁻¹ 254 mA h g ⁻¹ /1 A g ⁻¹ 224 mA h g ⁻¹ /2 A g ⁻¹	83.5%/1000 cycles/1 A g ⁻¹	63.4%	
CoP⊂NPPCS ⁶	174 mA h g ⁻¹ /0.05 A g ⁻¹ 134 mA h g ⁻¹ /0.1 A g ⁻¹ 123 mA h g ⁻¹ /0.2 A g ⁻¹ 94 mA h g ⁻¹ /0.5 A g ⁻¹ 74 mA h g ⁻¹ /1 A g ⁻¹ 54 mA h g ⁻¹ /2 A g ⁻¹	114 mA h g ⁻¹ /1000 cycles/0.5 A g ⁻¹	19.6%	

	530 mA h g ⁻¹ /0.1 A g ⁻¹			
CoS@G ⁷	414 mA h g ⁻¹ /0.5 A g ⁻¹			
	365 mA h g ⁻¹ /1 A g ⁻¹	70.2%/(100.5%)	64 49/	
	310 mA h g ⁻¹ /2 A g ⁻¹	70.2%/100 cycles/0.5 A g -	04.4%	
	278 mA h g ⁻¹ /3 A g ⁻¹			
	232 mA h g ⁻¹ /4 A g ⁻¹			
	240 mA h g ⁻¹ /0.05 A g ⁻¹			
	21 8 mA h g ⁻¹ /0.1 A g ⁻¹			
	20 9 mA h g ⁻¹ /0.2 A g ⁻¹		60.20/	
V ₂ O ₃ @PNCNFS [®]	193 mA h g ⁻¹ /0.3 A g ⁻¹	95.8%/500 cycles/0.05 A g -	60.3%	
	166 mA h g ⁻¹ /0.5 A g ⁻¹			
	134 mA h g ⁻¹ /1 A g ⁻¹			
	228 mA h g ⁻¹ /0.1 A g ⁻¹			
	162 mA h g ⁻¹ /0.2 A g ⁻¹			
KTO/rGO ⁹	116 mA h g ⁻¹ /0.5 A g ⁻¹	—/700 cycles /2 A g ⁻¹	24%	
	84 mA h g ⁻¹ /1 A g ⁻¹			
	75 mA h g ⁻¹ /2 A g ⁻¹			
N4 KTO10	105 mA h g ⁻¹ /0.1 A g ⁻¹	$519/(000 \text{ cycles}/0.2 \text{ A s}^{-1})$	25.0%	
IVI-KIO-*	81 mA h g ⁻¹ /0.3 A g ⁻¹	51%/900 Cycles/0.2 A g -	25.9%	
	141 mA h g ⁻¹ /0.02 A g ⁻¹			
	101 mA h g ⁻¹ /0.05 A g ⁻¹		27%	
a Ti C MNDc ¹¹	86 mA h g ⁻¹ /0.1 A g ⁻¹	$42 \text{ mA} \text{ b } \pi^{-1} / (500 \text{ cyclor} / 0.2 \text{ A} \pi^{-1})$		
	77 mA h g ⁻¹ /0.15 A g ⁻¹	42 mA mg -7500 cycles/0.2 A g -		
	70 mA h g ⁻¹ /0.2 A g ⁻¹			
	60 mA h g ⁻¹ /0.3 A g ⁻¹			
	138.3 mA h g ⁻¹ /0.05 A g ⁻¹			
HNTO/CS ¹²	127.9 mA h g ⁻¹ /0.1 A g ⁻¹	82.5%/1555 cycles /0.1 A g ⁻¹	-	
	48.7 mA h g ⁻¹ /0.5 A g ⁻¹			
	238 mA h g ⁻¹ /0.1 A g ⁻¹			
	217 mA h g ⁻¹ /0.2 A g ⁻¹			
	192 mA h g ⁻¹ /0.5 A g ⁻¹			
N danad carbon nanofiboro13	172 mA h g ⁻¹ /1 A g ⁻¹	$146 \text{ mA} \text{ h} = \frac{1}{4000} \text{ malos} / 2.4 \text{ m}^{-1}$	400/	
N-doped carbon hanolibers-	153 mA h g ⁻¹ /2 A g ⁻¹	146 MA II g -74000 Cycles/2 A g -	49%	
	126 mA h g ⁻¹ /5 A g ⁻¹			
	104 mA h g ⁻¹ /10 A g ⁻¹			
	101 mA h g ⁻¹ /20 A g ⁻¹			
HINCA ¹⁴	342.8 mA h g ⁻¹ /0.028 A g ⁻¹			
	302.8 mA h g ⁻¹ /0.056 A g ⁻¹			
	251.4 mA h g ⁻¹ /0.14 A g ⁻¹	0.05% decay/per cycle/500 cycles/0.14 A g $^{-1}$	72.1%	
	200 mA h g ⁻¹ /0.28 A g ⁻¹			
	114.3 mA h g ⁻¹ /0.56 A g ⁻¹			

	240 mA h g ⁻¹ /0.05 A g ⁻¹ 236 mA h g ⁻¹ /0.08 A g ⁻¹		
CNFF ¹⁵	214 mA h g ⁻¹ /0.1 A g ⁻¹	0.006% decay/per cycle/2000 cycles /1 A g ⁻¹ —	
	202 mA h g ⁻¹ /0.2 A g ⁻¹ 181 mA h g ⁻¹ /0.5 A g ⁻¹		
	164 mA h g ⁻¹ /1 A g ⁻¹		

Table S4. Electrochemical performance comparison of as-assembled $TiO_2/C@NPSC//ZDPC$ PIHC with other PIHC, SIHCs and LIHCs reported early.

System	Energy density/Power density	Potential Window (V)	Capacity Retention/current density/Cycling life
PIHCs			
Our work	114 W h kg ⁻¹ /210 W kg ⁻¹ 37 3 W h kg ⁻¹ /21 kW kg ⁻¹	0-4.2	91.6%/1 A g ⁻¹ /10 000 cycles
CTP@//AC ¹⁶	80 W h kg ⁻¹ /32 W kg ⁻¹ 34 W h kg ⁻¹ /5.144 kW kg ⁻¹	1-4	75.9%/5 A g ⁻¹ /4000 cycles
Soft carbon//AC ¹⁷	120 W h kg ⁻¹ /96 W kg ⁻¹ 4.32 W h kg ⁻¹ /0.536 kW kg ⁻¹	0-4	97.5%/0.75 A g ⁻¹ /1500 cycles
KTO//NGC ¹⁸	58.2 W h kg ⁻¹ /160 W kg ⁻¹ 11.8 W h kg ⁻¹ /7.2 kW kg ⁻¹	0-3.5	75.5%/1 A g ⁻¹ /5000 cycles
CO₂P@rGO//AC ¹⁹	87 W h kg ⁻¹ /12 W kg ⁻¹ 10 W h kg ⁻¹ /4.2647 kW kg ⁻¹	1-4	68%/1 A g ⁻¹ /1000 cycles
NHCS//ANHCS ²⁰	114.2 W h kg ⁻¹ /100.5 W kg ⁻¹ 19.1 W h kg ⁻¹ /8.203 kW kg ⁻¹	0.01-4	93%/0.5 A g ⁻¹ /2000 cycles 80.4%/2 A g ⁻¹ /5000 cycles
S-N-PCNs//AC ²¹	187 W h kg [.] 1/99 W kg ^{.1} 76 W h kg ^{.1} /5.136 kW kg ^{.1}	0-4	86.4%/1 A g ⁻¹ /3000 cycles
SIHCs			
HP-CNWs//FM-CNSs ²²	130.6 W h kg ⁻¹ /210 W kg ⁻¹ 43.6 W h kg ⁻¹ /15.26 kW kg ⁻¹	0.5-4.2	85.4%/0.5 A g ⁻¹ /3000 cycles
MWTOG//AC ²³	64.2 W h kg ⁻¹ /56.3 W kg ⁻¹ 25.8 W h kg ⁻¹ /1.357 kW kg ⁻¹	1-3.8	90%/3.35 A g ⁻¹ /10 000 cycles
Gr-Nb ₂ O ₅ //AC ²⁴	112.9 W h kg ⁻¹ /80.1 W kg ⁻¹ 62.2 W h kg ⁻¹ /5.33 kW kg ⁻¹	1-4.3	97.1%/1 A g ⁻¹ /1500 cycles
TiO ₂ @CNT@C//BAC ²⁵	81.2 W h kg ⁻¹ /126 W kg ⁻¹ 37.9 W h kg ⁻¹ /12.4 kW kg ⁻¹	1-4	85.5/1 A g ⁻¹ /5000 cycles
N-TiO ₂ //AC ²⁶	80.3 W h kg ⁻¹ /500 W kg ⁻¹ 24.6 W h kg ⁻¹ /12.5 kW kg ⁻¹	1-4	85%/1 A g ⁻¹ /6500 cycles
PSNC//PSOC-A ²⁷	201 W h kg ⁻¹ /185 W kg ⁻¹ 50 W h kg ⁻¹ /16.5 kW kg ⁻¹	1.5-3.5	72%/6.4 A g ⁻¹ /10 000 cycles
LIHCs			
MoO ₂ -CNT//AC ²⁸	70 W h kg ⁻¹ /83 W kg ⁻¹ 34 W h kg ⁻¹ /4 kW kg ⁻¹	0.8-3.2 V	75%/1000 cycles/1 A g ⁻¹

Co ₃ ZnC@NC//MPC ²⁹	141.4 W h kg ⁻¹ /275 W kg ⁻¹	1 4 5	80%/ 1 A g ⁻¹ /1000 cycles	
	15.2 W h kg ⁻¹ /10.3 kW kg ⁻¹	1-4.5		
Nb ₂ O ₅ //AC ³⁰	95.55 W h kg ⁻¹ /191 W kg ⁻¹	1 2 5 1/	83%/1000 cycles/2.2 A g ⁻¹	
	65.39 W h kg ⁻¹ /5.35 kW kg ⁻¹	1-3.5 V		
TiC//PHPNC ³¹	101.5 W h kg ⁻¹ /450 W kg ⁻¹	0.4.5.V	82%/5000 cycles/2 A g ⁻¹	
	23.4 W h kg ⁻¹ /67.5 kW kg ⁻¹	0-4.5 V		

References:

- 1. C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li and S. Guo, Adv. Mater., 2018, 30, 1800036.
- 2. J. Zhou, L. Wang, M. Yang, J. Wu, F. Chen, W. Huang, N. Han, H. Ye, F. Zhao, Y. Li and Y. Li, Adv. Mater., 2017, 29, 1702061.
- 3. Y. Fang, R. Hu, B. Liu, Y. Zhang, K. Zhu, J. Yan, K. Ye, K. Cheng, G. Wang and D. Cao, J. Mater. Chem. A, 2019, 7, 5363-5372.
- 4. M. Tao, G. Du, Y. Zhang, W. Gao, D. Liu, Y. Luo, J. Jiang, S. Bao and M. Xu, Chem. Eng. J., 2019, 369, 828-833.
- 5. W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng, J. Zhou, K. Wang, C. Yang, Y. Yang and S. Guo, Adv. Mater., 2018, 30, 1801812.
- 6. J. Bai, B. Xi, H. Mao, Y. Lin, X. Ma, J. Feng and S. Xiong, Adv. Mater., 2018, 30, 1802310.
- 7. H. Gao, T. Zhou, Y. Zheng, Q. Zhang, Y. Liu, J. Chen, H. Liu and Z. Guo, Adv. Funct. Mater., 2017, 27, 1702634.
- 8. T. Jin, H. Li, Y. Li, L. Jiao and J. Chen, Nano Energy, 2018, 50, 462-467.
- 9. C. Zeng, F. Xie, X. Yang, M. Jaroniec, L. Zhang and S. Qiao, Angew. Chem., Int. Ed. Engl. 2018, 57, 8540-8544.
- 10. Y. Dong, Z. S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi and X. Bao, ACS Nano, 2017, 11, 4792-4800.
- 11. P. Lian, Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, W. Sen, C. Sun, J. Qin, X. Shi and X. Bao, Nano Energy, 2017, 40, 1-8.
- 12. P. Li, W. Wang, S. Gong, F. Lv, H. Huang, M. Luo, Y. Yang, C. Yang, J. Zhou, C. Qian, B. Wang, Q. Wang and S. Guo, *ACS Appl. Mater. interfaces*, 2018, **10**, 37974-37980.
- 13. Y. Xu, C. Zhang, M. Zhou, Q. Fu, C. Zhao, M. Wu and Y. Lei, Nat. Commun., 2018, 9, 1720.
- 14. D. S. Bin, X. J. Lin, Y. G. Sun, Y. S. Xu, K. Zhang, A. M. Cao and L. J. Wan, J. Am. Chem. Soc., 2018, 140, 7127-7134.
- 15. H. Li, Z. Cheng, Q. Zhang, A. Natan, Y. Yang, D. Cao and H. Zhu, Nano Lett., 2018, 8, 7407-7413.
- 16. Z. Zhang, M. Li, Y. Gao, Z. Wei, M. Zhang, C. Wang, Y. Zeng, B. Zou, G. Chen and F. Du, Adv. Funct. Mater., 2018, 28, 1802684.
- 17. L. Fan, K. Lin, J. Wang, R. Ma and B. Lu, Adv. Mater., 2018, 30, 1800804.
- 18. S. Dong, Z. Li, Z. Xing, X. Wu, X. Ji and X. Zhang, ACS Appl. Mater. interfaces, 2018, 10, 15542-15547.
- 19. Y. Wang, Z. Zhang, G. Wang, X. Yang, Y. Sui, F. Du and B. Zou, Nanoscale Horiz., 2019, 4, 1394-1401.
- 20. D. Qiu, J. Guan, M. Li, C. Kang, J. Wei, Y. Li, Z. Xie, F. Wang and R. Yang, Adv. Funct. Mater., 2019, 29, 1903496.
- 21. X. Hu, Y. Liu, J. Chen, L. Yi, H. Zhan and Z. Wen, Adv. Energy Mater., 2019, 9, 1901533.
- 22. M. Y. Song, N. R. Kim, S. Y. Cho, H.-J. Jin and Y. S. Yun, ACS Sustainable Chem. Eng., 2017, 5, 616-624.
- 23. Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu and Y. Lu, ACS Nano, 2017, 11, 2952-2960.
- 24. X. Wang, Q. Li, L. Zhang, Z. Hu, L. Yu, T. Jiang, C. Lu, C. Yan, J. Sun and Z. Liu, Adv. Mater., 2018, 30, e1800963.
- 25. Y.-E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei and Z. Zhou, Adv. Energy Mater., 2017, 7, 1701222.
- 26. S. Liu, Z. Cai, J. Zhou, A. Pan and S. Liang, J. Mater. Chem. A, 2016, 4, 18278-18283.
- 27. J. Ding, H. Wang, Z. Li, K. Cui, D. Karpuzov, X. Tan, A. Kohandehghan and D. Mitlin, Energy Environ. Sci., 2015, 8, 941-955.
- 28. S. Fleischmann, M. Zeiger, A. Quade, A. Kruth and V. Presser, ACS Appl. Mater. interfaces, 2018, 10, 18675-18684.
- 29. G. Zhu, T. Chen, L. Wang, L. Ma, Y. Hu, R. Chen, Y. Wang, C. Wang, W. Yan, Z. Tie, J. Liu and Z. Jin, *Energy Storage Mater.*, 2018, 14, 246-252.
- 30. B. Deng, T. Lei, W. Zhu, L. Xiao and J. Liu, Adv. Funct. Mater., 2018, 28, 1704330.
- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Adv. Funct. Mater.*, 2016, 26, 3082-3093.