Supplementary Information for

Heterogeneous Interface on NiS@Ni₃S₂/NiMoO₄ Heterostructures for Efficient

Urea Electrolysis

Linna Sha,^{a,+} Tianfu Liu,^{b,+} Ke Ye,^{a,*} Kai Zhu,^a Jun Yan,^a Jinling Yin,^a Guiling Wang,^a

Dianxue Cao^{a,*}

^a Key Laboratory of Superlight Materials and Surface Technology of Ministry of

Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.

^b State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,

China.

⁺ These authors contributed equally to this work.

^{*}Corresponding authors.

E-mail addresses: yeke@hrbeu.edu.cn (K. Ye); caodianxue@hrbeu.edu.cn (D. Cao)

Experimental

Synthesis of NiS@Ni₃S₂ nanorod arrays framework. In a typical synthesis, 5 mmol sulfur powder was dispersed in 16 mL C₂H₈N₂ with homogenously stirred for 10 min, and then 16 mL ethanol was added to the above solution and rapid stirring for 10 min. Next, the mixture was transferred into a 50 mL Teflon-lined stainless autoclave containing the precleaned Ni foam (2.0 cm×3.0 cm). After hydrothermal treating at 160 °C for 24 h, the products were collected and then cleaned by deionized water and ethanol several times before they were dried under vacuum at 60 °C for overnight. *Synthesis of NiS@Ni₃S₂/NiMoO₄ composite*. First, 0.01 g sodium molybdate and 0.014 g nickel nitrate were dispersed into 50 mL of 50 wt% aqueous ethanol solution. Subsequently, the as-obtained NiS@Ni₃S₂ was immersed in the solution and reacted in a 50 mL Teflon-lined autoclave at 130 °C for 12 h. After cooled down to room temperature, the Ni foam with prepared precursors were transferred to muffle furnace and annealed at 400 °C for 2 h in air atmosphere to obtain the NiS@Ni₃S₂/NiMoO₄ composite.

For comparison, NiMoO₄ grown on Ni foam were obtained in the similarly procedure by replacing NiS@Ni₃S₂ with pure Ni foam.

Material Characterizations

The crystal configuration of the samples was identified by X-ray diffractometer (Rigaku TTR III) with a Cu_{Ka} radiation (λ =1.5418 nm). The scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) were taken with JEOL JSM-6480 system. Transmission electron microscopy (TEM) and high resolution

TEM (HRTEM) images were collected on a JEOL-2100F TEM at an acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were carried out using the surface analysis system (Thermofisher Escalab Xi⁺) with a monochromatic $Al_{K\alpha}$ X-ray source (hv=1486.6 eV).

Electrochemical Measurements

Electrochemical measurements were carried out in an electrochemical workstation (Autolab PGSTAT 302) with a typical three-electrode system, in which the resultant catalyst with a dimensions of 1.0 cm×1.0 cm was directly served as the working electrode, The carbon rod and Ag/AgCl electrode were used as the working electrode, counter electrode and reference electrode, respectively. After weighed the active materials loads per unit area, the mass loading of NiS@Ni₃S₂, NiMoO₄/NF and NiS@Ni₃S₂/NiMoO₄ catalysts are 0.0312 g, 0.0326 g and 0.0326 g, respectively. All linear sweep voltammetry (LSV) were carried out with a scan rate of 2 mV s⁻¹. All measured potentials were calibrated to reversible hydrogen electrode (RHE) according to the following equation: $E_{RHE} = E_{Ag/AgCl} + 0.197 + 0.059 \times pH$. The measured UOR polarization curves were capacity corrected by taking an average of forward and backward scans. The electrochemically active surface areas (ECSA) were estimated by a series of cyclic voltammetry measurements performed with various scan rates (20~100 mV s⁻¹) in a non-Faradaic region. By plotting the difference of current density (ΔJ) between the anodic and cathodic sweeps ($J_{anodic}-J_{cathodic}$) under intermediate potential against the scan rate, a linear trend was observed. The slope of the fitting line is equal to twice the geometric double layer capacitance (C_{dl}) , which is proportional to

the ECSA of the catalyst. Therefore, we can compare the electrochemical surface areas of different samples based on their C_{dl} values. Electrochemical impedance spectra (EIS) were collected at a frequency between 100 kHz and 0.01 kHz. In water splitting tests, all results were revised by ohmic potentials drop (*iR*) correction. The electrolyte for HER, OER and water electrolysis measurements was 1 M KOH, whereas the UOR and urea electrolysis performance were evaluated in 1 M KOH with 0.5 M urea. The stability measurements were recorded by chronopotentiometry measurements.

Calculations

The simulated model in this work consists of a slab of NiS (Ni₃₆S₃₆), and NiMoO₄ (Ni₈Mo₈O₃₂). The calculations presented here were performed using the periodic, spinpolarized DFT as implemented in the Vienna ab initio simulation package (VASP).^[1] The electron-ion interactions were described by the projector augmented wave (PAW) method proposed by Blochl^[2] and implemented by Kresse.^[3] The RPBE functional was used as an exchange-correlation functional approximation^[4] and a plane wave basis set with an energy cutoff of 400 eV was used. Only gamma point was used for the Brillouin zone sampling.

Figure S1. (a) Cross-sectional SEM image and the EDX spectra of the (b) internal framework and (c) external nanorods of the NiS@Ni₃S₂ sample.

Figure S2. (a) XRD pattern and (b) SEM image of $NiMoO_4$ nanosheets grown on the Ni foam.

Figure S3. Full XPS survey spectrum of NiS@Ni₃S₂/NiMoO₄.

Figure S4. OER polarization curves of NiMoO₄, NiS@Ni₃S₂ and NiS@Ni₃S₂/NiMoO₄ in 1.0 M KOH.

Figure S5. Cyclic voltammetry (CV) curve (black) and corresponding average activity calculated from the CV curve (red) of NiS@Ni₃S₂/NiMoO₄ electrode. Scan rate: 2 mV s^{-1} .

Figure S6. Cyclic voltammetry curves for (a) NiMoO₄, (b) NiS@Ni₃S₂ and (c) NiS@Ni₃S₂/NiMoO₄ electrodes in the region of 0.54~0.64 V vs. RHE with different scan rates upon UOR catalysis.

Figure S7. Nyquist plots of NiMoO₄, NiS@Ni₃S₂ and NiS@Ni₃S₂/NiMoO₄ catalysts for UOR process at 1.35 V vs. RHE.

Figure S8. Long-time stability test of NiS@Ni₃S₂/NiMoO₄ at (a) 100 and (b) 200 mA cm^{-2} for 12 and 8 h, respectively.

Figure S9. (a) XRD pattern and (b) SEM image of NiS@Ni₃S₂/NiMoO₄ after UOR test.

Figure S10. (a) HRTEM image and (b) Raman spectrum of NiS@Ni₃S₂/NiMoO₄ after

UOR test.

Figure S11. EDX spectra of $NiS@Ni_3S_2/NiMoO_4$ catalyst (a) before and (b) after UOR

test.

Figure S12. High resolution Ni 2p spectrum of NiS@Ni₃S₂/NiMoO₄ after UOR test.

Figure S13. (a) The heterojunction structure of NiS/NiMoO₄ with (010) facet. The gray, red, yellow, purple spheres represent nickel, oxygen, sulfur, and molybdenum atoms, respectively. (b) The charge density difference in the heterostructure of NiS and NiMoO₄. The yellow and blue isosurfaces represent charge accumulation and charge depletion in space, respectively.

Figure S14. Cyclic voltammetry curves for (a) NiMoO₄, (b) NiS@Ni₃S₂ and (c) NiS@Ni₃S₂/NiMoO₄ electrodes in the region of $0.02\sim0.12$ V vs. RHE with different scanning rates upon HER catalysis.

Figure S15. Nyquist plots of NiMoO₄, NiS@Ni₃S₂ and NiS@Ni₃S₂/NiMoO₄ catalysts for HER process at an overpotential of -200 mV.

Figure S16. (a) XRD pattern and (b) SEM image of NiS@Ni₃S₂/NiMoO₄ after HER test.

Figure S17. HER polarization plots of NiS@Ni $_3$ S₂/NiMoO₄ in 1 M KOH with and without 0.5 M urea.

Catalysts	Urea concentrate (M)	j (mA cm ⁻²)	Voltage (V vs RHE)	Tafel slope (mV dec ⁻¹)	References
NF/NiMoO4	0.5	10	1.37	19	[5]
Ni ₃ N/NF	0.5	10	1.34	41	[6]
MoS ₄ -LDH/NF	0.33	10	1.34	29	[7]
MnO ₂ /MnCo ₂ O ₄ /Ni	0.5	10	1.33	72	[8]
Ni ₂ P/NF	0.5	10	1.37	49	[9]
NF/MnO ₂	0.5	10	1.33	75	[10]
Ni-Mo alloy	0.1	10	1.36	22	[11]
NiMoS/Ti	0.5	10	1.34	19	[12]
NiS@Ni ₃ S ₂ /NiMoO 4	0.5	10	1.30	30	This work

Table S1. Comparison of the UOR performance of NiS@Ni $_3S_2$ /NiMoO4 with otherreported non-precious electrocatalysts in 1 M KOH electrolyte.

Catalysts	j (mA cm ⁻²)	η _j (mV)	Tafel slope (mV dec ⁻¹)	References
MoSe ₂ /SnO ₂	10	174	51	[13]
Ni ₃ S ₂ /NiS/NOSC	10	180	83	[14]
Ni _{0.89} Co _{0.11} Se ₂ MNSN/NF	10	85	52	[15]
MoS ₂ -Ni ₃ S ₂	10	110	83	[16]
S-MoSe ₂	10	100	60	[17]
C03S4@M0S2	10	136	74	[18]
CF@NPC-MoP	10	53	55.6	[19]
Co ₃ S ₄ /EC-MOF	10	84	82	[20]
N-MoSe ₂ /TiC-C	10	106	32	[21]
NiS@Ni ₃ S ₂ /NiMoO ₄	10	80	75	This work

Table S2. Comparison of the HER performance of NiS@Ni $_3S_2$ /NiMoO4 with otherreported electrocatalysts in 1 M KOH electrolyte.

Catalysts	Electrolyte	Cell voltage (V)	j (mA cm ⁻²)	References
NiMoS/CC	1.0 M KOH+0.5 M urea	1.59	10	[12]
Ni ₃ N/CC	1.0 M KOH+0.33 M urea	1.44	10	[22]
MnO ₂ /MnCo ₂ O ₄ /NF	1.0 M KOH+0.5 M urea	1.55	10	[8]
CoS ₂ /Ti	1.0 M KOH+0.3 M urea	1.59	10	[23]
Fe _{11.1%} -Ni ₃ S ₂ /NF	1.0 M KOH+0.33 M urea	1.46	10	[24]
Ni-Mo alloy	1.0 M KOH+0.1 M urea	1.43	10	[11]
1% Cu:aNi(OH) ₂ /NF	1.0 M KOH+0.33 M urea	1.49	10	[25]
NiFeCo LDH/NF	1.0 M KOH+0.33 M urea	1.49	10	[26]
Ni ₂ P/Fe ₂ P	1.0 M KOH+0.5 M urea	1.47	10	[27]
NiS@Ni ₃ S ₂ /NiMoO ₄	1.0 M KOH+0.5 M urea	1.40	10	This work

Table S3. Comparison of the urea electrolysis efficiency of NiS@Ni $_3$ S2/NiMoO4 withother reported bifunctional electrocatalysts.

References

- [1] G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- [2] G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.
- [3] P. E. Blöchl and Matter, Phys. Rev. B, 1994, 50, 17953-17979.
- [4] B. Hammer, L. B. Hansen and J. K. Nørskov, Phys. Rev. B, 1999, 59, 7413-7421.
- [5] Z. Y. Yu, C. C. Lang, M. R. Gao, Y. Chen, Q. Q. Fu, Y. Duan and S. H. Yu, *Energy Environ. Sci.*, 2018, **11**, 1890-1897.
- [6] S. Hu, C. Feng, S. Wang, J. Liu, H. Wu, L. Zhang and J. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 13168-13175.
- [7] A. Nadeema, V. Kashyap, R. Gururaj and S. Kurungot, *ACS Appl. Mater. Interfaces*, 2019, **11**, 25917-25927.
- [8] C. Xiao, S. Li, X. Zhang and D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 7825-7832.
- [9] D. Liu, T. Liu, L. Zhang, F. Qu, G. Du, A. M. Asiri and X. Sun, J. Mater. Chem. A, 2017, 5, 3208-3213.
- [10]S. Chen, J. Duan, A. Vasileff and S. Z. Qiao, *Angew. Chem. Int. Ed.*, 2016, 55, 3804-3808.
- [11] J. Y. Zhang, T. He, M. Wang, R. Qi, Y. Yan, Z. Dong, H. Liu, H. Wang and B. Y.Xia, *Nano Energy*, 2019, **60**, 894-902.
- [12]X. Wang, J. Wang, X. Sun, S. Wei, L. Cui, W. Yang and J. Liu, *Nano Res.*, 2018, 11, 988-996.
- [13] Y. Huang, Y. E. Miao, J. Fu, S. Mo, C. Wei and T. Liu, J. Mater. Chem. A, 2015,

3, 16263-16271.

- [14]Y. Cao, Y. Meng, S. Huang, S. He, X. Li, S. Tong and M. Wu, ACS Sustain. Chem. Eng., 2018, 6, 15582-15590.
- [15] B. Liu, Y. F. Zhao, H. Q. Peng, Z. Y. Zhang, C. K. Sit, M. F. Yuen, T. R. Zhang,
 C. S. Lee and W. J. Zhang, *Adv. Mater.*, 2017, 29, 1606521.
- [16] J. Zhang, T. Wang, D. Pohl, B. Rellinghaus and R. J. Dong, Angew. Chem. Int. Ed., 2016, 55, 6702-6707.
- [17] C. Xu, S. J. Peng, C. L. Tan, H. X. Ang, H. T. Tan, H. Zhang and Q. Y. Yan, J. Mater. Chem. A, 2014, 2, 5597-5601.
- [18] Y. Guo, J. Tang, Z. Wang, Y. M. Kang, Y. Bando and Y. Yamauchi, *Nano Energy*, 2018, 47, 494-502.
- [19] J. Xiao, Z. Zhang, Y. Zhang, Q. Lv, F. Jing, K. Chi and S. Wang, *Nano Energy*, 2018, **51**, 223-230.
- [20] T. Liu, P. Li, N. Yao, T. Kong, G. Cheng, S. Chen and W. J. Luo, *Adv. Mater.*, 2019, **31**, 1806672.
- [21] S. Deng, Y. Fan, Q. H. Zhang and Z. Yu, Adv. Mater., 2018, 30, 1802223.
- [22] Q. Liu, L. Xie, F. Qu, Z. Liu, G. Du, A. M. Asiri and X. Sun, *Inorg. Chem. Front.*, 2017, 4, 1120-1124.
- [23] S. Wei, X. Wang, J. Wang, X. Sun, L. Cui, W. Yang, Y. Zheng and J. Liu, *Electrochim. Acta*, 2017, **246**, 776-782.
- [24] W. Zhu, Z. Yue, W. Zhang, N. Hu, Z. Luo, M. Ren, Z. Xu, Z. Wei, Y. Suo and J.Wang, J. Mater. Chem. A, 2018, 6, 4346-4353.

- [25] J. Xie, L. Gao, S. Cao, W. Liu, F. Lei, P. Hao, X. Xia and B. Tang, J. Mater. Chem. A, 2019, 7, 13577-13584.
- [26] P. Babar, A. Lokhande, V. Karade, B. Pawar, M. G. Gang, S. Pawar and J. H. Kim, ACS Sustain. Chem. Eng., 2019, 7, 10035-10043.
- [27] L. Yan, Y. Sun, E. Hu, J. Ning, Y. Zhong, Z. Zhang and Y. Hu, J. Colloid Interf. Sci., 2019, 541, 279-286.