Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Flexible self-charging sodium-ion full battery for self-powered wearable electronics

Dan Zhou¹, Taotao Yang², Jiaqi Yang³ and Li-zhen Fan¹

¹ Center for Green Innovation, School of Mathematics and Physics & Beijing Advanced Innovation

Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University

of Science and Technology Beijing, Beijing 100083, China

² Basic Experimental Center for Natural Science, University of Science and Technology Beijing, Beijing

100083, China

³Office of Educational Administration, Shenyang Open University, Shenyang 110003, China

* Corresponding author. zhoudan@ustb.edu.cn; fanlizhen@ustb.edu.cn (L.-Z. Fan).

Preparation of Na₃V₂(PO₄)₃@C: The Na₃V₂(PO₄)₃@C composite was synthesized via a sol–gel method combined with a carbonization process. Initially, the stoichiometric of precursors of NaOH, NH₄VO₃ and NH₄H₂PO₄ were well dissolved in 300 mL of deionized water, followed by adding 12 g of citric acid that used as chelating reagent and carbon source. Subsequently, the obtained mixture was magnetically stirred at 90 °C until the internal water was fully evaporated, yielding to a black gel. After that, the black gel was dried in a vacuum oven at 80 °C for 24 h to form a xerogel. Finally, the xerogel was milled, followed by pre-annealed at 300 °C for 5 h and second-heated at 850 °C for 8 h in Ar flow, obtaining the desired Na₃V₂(PO₄)₃@C composite.

Fig. S1 Optical image of the as-prepared BaTiO₃-P(VDF-HFP) gel-polymer film.

Fig. S2 Dimension distribution of BaTiO₃ piezoelectric particles.

Element name	С	Na	V	Р	0
Atomic ratio (%)	45.95	6.30	4.21	7.30	36.25
Mass ratio (%)	32.14	8.43	12.49	13.17	33.77

Table S1 Atomic ratio and mass distribution of the $Na_3V_2(PO_4)_3@C$ cathode material by XPS analysis

Element name	С	0
Atomic ratio (%)	97.63	2.37
Mass ratio (%)	96.86	3.14

Table S2 Atomic ratio and mass distribution of the hard carbon anode material by XPS analysis

Fig. S3 Raman spectrum of the hard carbon anode material.

Fig. S4 Self-charging behavior of the flexible SCSFB in the initial repeated bending stage.

Fig. S5 Self-charging behavior of the flexible SCSFB in the initial palm patting stage.

Device	Piezoelectric materials	Self-charging voltage	Ref.
SCPC	PVDF	0.395 V (periodic compression)	[1]
SCPC	PVDF-PZT	~ 0.3 V (periodic compression)	[2]
SCASC	Fish swim bladder	0.281 V (finger imparting)	[3]
Flexible SCPCs	PVDF	0.22 V (periodic compression)	[4]
SCSPC	PVDF-ZnO	0.145 V (palm patting)	[5]
SCSPC	Porous PVDF	0.112 (compression)	[6]
Elevible SCSEP	Datio DAVDE HED	0.4 V (repeated bending);	This
	Dario ₃ -r(VDF-HFP)	0.46 V (palm patting);	work

 Table S3 Self-charging voltage of similar energy device using various built-in piezoelectric materials.

Fig. S6 Voltage curve of a device assembled with unpolarized piezoelectric gel-electrolyte film under

palm patting for 300 s.

Fig. S7 Voltage curve of a device assembled with pure P(VDF-HFP) gel-electrolyte film under palm patting for 300 s.

12

References

- [1] X. Y. Xue, S. H. Wang, W. X. Guo, Y. Zhang and Z. L. Wang, Nano Lett., 2012, 12, 5048–5054.
- [2] Y. Zhang, Y. J. Zhang, X. Y. Xue, C. X. Cui, B. He, Y. X. Nie, P. Deng and Z. L. Wang, *Nanotechnology*, 2014, 25, 105401.
- [3] A. Maitra, S. K. Karan, S. Paria, A. K. Das, R. Bera, L. Halder, S. K. Si, A. Bera and B. B. Khatua, *Nano Energy*, 2017, 40, 633–645.
- [4] H. X. He, Y. M. Fu, T. M. Zhao, X. C. Gao, L. L. Xing, Y. Zhang and X. Y. Xue, *Nano Energy*, 2017, **39**, 590–600.
- [5] A. Ramadoss, B. Saravanakumar, S. W. Lee, Y.-S. Kim, S. J. Kim and Z. L. Wang, *ACS Nano*, 2015, 9, 4337–4345.
- [6] S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V. K. Mariappan, S. Manoharan and S.-J. Kim, J. Mater. Chem. A, 2019, 7, 21693–21703.