## **Electronic Supplementary Information**

# Highly permeable and selective mixed-matrix membranes for hydrogen separation containing PAF-1

Rujing Hou<sup>1</sup>, Bader S. Ghanem<sup>2</sup>, Stefan J. D. Smith<sup>1, 3</sup>, Cara M. Doherty<sup>3</sup>, Caitlin Setter<sup>1</sup>, Huanting Wang<sup>1</sup>, Ingo Pinnau<sup>2\*</sup>, Matthew Hill<sup>1, 3\*</sup>

<sup>1</sup> Department of Chemical Engineering, Monash University, Clayton, Victoria 3168, Australia

<sup>2</sup> Functional Polymer Membranes Group, Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, 23955, Thuwal, Saudi Arabia

<sup>3</sup> CSIRO, Bag 10, Clayton South, Victoria 3169, Australia

## 1. Isotherm Adsorption Curves

A Micromeritics ASAP 2420 instrument was used for measuring adsorption isotherms of  $N_2$  (77 K) for the prepared PAF-1. These samples were activated at 100 °C under vacuum (10<sup>-6</sup> torr) for 24 h prior to analysis. The Brunauer-Emmett-Teller (BET) surface area for PAF-1 was 3905 m<sup>2</sup> g<sup>-1</sup>.



Figure S1: N<sub>2</sub> adsorption isotherm at 77 K for PAF-1.

## 2. Thermal-Gravimetric Analysis

Thermal-gravimetric analysis was carried out using a Mettler Toledo TGA 2 STAR<sup>e</sup> System thermogravimetric analyser. Membranes samples were tested from 50 to 800 °C at 10 °C min <sup>-1</sup> under 50 mL/min nitrogen



**Figure S2**: Thermal gravimetric analysis for TPIM-2, TPIM-2@5%PAF-1 and TPIM-2@10%PAF-1

# **3. Membrane Flexibility Bend Test**



**Figure S3**: Membrane flexibility bend test for TPIM-2, TPIM-2@5%PAF-1 and TPIM-2@10%PAF-1.

## 4. Fourier-Transform Infrared (FT-IR) Spectroscopy

Fourier Transform Infrared (FT-IR) spectra of all samples including six TPIM-2 related membranes and one PAF-1 powder sample were collected using a Thermo Scientific NICOLET 6700 FT-IR.



Figure S4: FT-IR spectra for PAF-1, fresh and aged TPIM-2, TPIM-2@5%PAF-1 and TPIM-2@10%PAF-1.

### **5. X-Ray Diffraction (XRD)**

Powder x-Ray diffraction (PXRD) for PAF-1 was performed on a Bruker D8 Advance A25 X-ray diffractometer using Cu K- $\alpha$  radiation (40kV, 40mA) equipped with a LynxEye XE-T detector. Samples were scanned over the 2 $\theta$  range from 2 to 85° with a step size of 0.02° and a count time of 1.6 seconds per step. XRD spectra for membrane film samples (TPIM-2, TPIM-2-PAF-1-based MMMs) were conducted on a Rigaku Smartlab X-ray diffractometer, operating under Cu K- $\alpha$  radiation (45Kv, 200mA) equipped with a HyPix-3000 detector. The samples were scanned over the 2 $\theta$  range from 2 to 70° with a step size of 0.04° and scan rate of 2 degrees per minute.



Figure S5a: X-Ray diffraction spectrum for PAF-1 powder.



**Figure S5b:** X-Ray diffraction spectra for fresh and aged TPIM-2, TPIM-2@5%PAF-1 and TPIM-2@10%PAF-1 membranes.

## 6. Gel Permeation Chromatography

Molecular weights and polydispersity index (PDI) of TPIM-2 was measured by gel permeation chromatography in chloroform (Agilent Technologies 1200 series) using polystyrene as calibration standards.

## 7. Membrane Permeability and Selectivity Used for Trade-Off Comparisons.

|                                                                                                         | P                  | ermeabil                           | ity (Barrer         | Ideal Selectivity          |           |                                 |                     |
|---------------------------------------------------------------------------------------------------------|--------------------|------------------------------------|---------------------|----------------------------|-----------|---------------------------------|---------------------|
| Table S1                                                                                                | P(H <sub>2</sub> ) | <b>P</b> ( <b>N</b> <sub>2</sub> ) | P(CH <sub>4</sub> ) | <b>P(CO</b> <sub>2</sub> ) | $H_2/N_2$ | H <sub>2</sub> /CH <sub>4</sub> |                     |
| TPIM-2                                                                                                  | 1651               | 85                                 | 104                 | 1987                       | 19.5      | 16.0                            |                     |
| TPIM-2@5% PAF-1                                                                                         | 2907               | 108                                | 120                 | 2747                       | 27.0      | 24.2                            |                     |
| TPIM-2@10% PAF-1                                                                                        | 4886               | 209                                | 260                 | 4655                       | 23.4      | 18.8                            | This work           |
| TPIM-2*                                                                                                 | 1175               | 30                                 | 33                  | 787                        | 38.7      | 35.2                            | THIS WOLK           |
| TPIM-2@5% PAF-1*                                                                                        | 1335               | 17                                 | 17                  | 447                        | 78.0      | 77.8                            |                     |
| TPIM-2@10% PAF-1*                                                                                       | 2440               | 40                                 | 39                  | 956                        | 61.0      | 62.6                            |                     |
| Matrimid                                                                                                | 27                 | 0.3                                | 0.2                 | 7.7                        | 97.0      | 83.3                            | Ref <sup>1</sup>    |
| PTMSP                                                                                                   | 19628              | 4132                               | 7030                | 30695                      | 4.8       | 2.8                             | #                   |
| TPIM-1                                                                                                  | 2666               | 54                                 | 50                  | 1549                       | 50.0      | 53.0                            | Ref <sup>2</sup>    |
| PIM-7                                                                                                   | 860                | 42                                 | 62                  | 1100                       | 20.5      | 14.0                            | Ref <sup>2</sup>    |
| PIM-Trip-TB                                                                                             | 8039               | 629                                | 905                 | 9709                       | 12.8      | 8.9                             | Ref <sup>2, 3</sup> |
| PIM-SBF                                                                                                 | 5240               | 554                                | 754                 | 10400                      | 9.5       | 7.0                             | Ref <sup>2</sup>    |
| PIM-EA-TB                                                                                               | 8114               | 580                                | 774                 | 7696                       | 14.0      | 10.5                            | Ref                 |
| PIM-1                                                                                                   | 4902               | 652                                | 1020                | 11427                      | 7.5       | 4.8                             | Ref <sup>4</sup>    |
| PIM-1/pDCX                                                                                              | 9713               | 1127                               | 1654                | 20553                      | 8.6       | 5.9                             | Ref <sup>4</sup>    |
| PIM-1/OH-pDCX                                                                                           | 5230               | 304                                | 379                 | 8508                       | 17.2      | 13.8                            | Ref <sup>4</sup>    |
| PIM-1/PAF-1                                                                                             | 7066               | 638                                | 902                 | 12354                      | 11.1      | 7.8                             | #                   |
| PTMSP/PAF-1                                                                                             | 18352              | 2226                               | 3859                | 27317                      | 8.3       | 4.8                             | #                   |
| PIM-1/UiO-66                                                                                            | 3590               | 250                                | 310                 | 5340                       | 14.4      | 11.6                            | Ref <sup>5</sup>    |
| PIM-1/Ti5UiO-66                                                                                         | 5280               | 660                                | 1220                | 13540                      | 8.0       | 4.3                             | Ref <sup>5</sup>    |
| PIM-1/ZIF-8                                                                                             | 10650              | 1090                               | 1440                | 17050                      | 9.8       | 7.4                             | Ref <sup>6</sup>    |
| PIM-1/Silicalite-1                                                                                      | 894                | 83                                 | 183                 | 2530                       | 10.8      | 4.9                             | Ref <sup>6</sup>    |
| PIM-1/GCNN                                                                                              | 3830               | 354                                | 503                 | 5785                       | 10.8      | 7.6                             | Ref <sup>6</sup>    |
| Notice: *: aged 2 months samples; GCNN: Graphitic Carbon Nitride Nanosheets, TIPM-1: aged 14 days, PIM- |                    |                                    |                     |                            |           |                                 |                     |
| trip-TB: aged 100 days, PIM-EA-TB: aged 470 days, PTMSP/PAF-1: aged 15 days, #: unpublished work        |                    |                                    |                     |                            |           |                                 |                     |

#### 8. TPIM-2 and TPIM-2/PAF-1 MMMs Permeability and Aging Studies

Pure-gas permeability calculation for He, H<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, CH<sub>4</sub> and CO<sub>2</sub> were based on the constant volume/variable pressure method. The gas permeability was determined from the rate of permeate pressure increase (dp/dt) once permeation reached steady state, according to equation S1. Membrane performance was conducted twice for each gas - the deviation was within 10%.

$$P = \frac{273 \times 10^{10} \quad VL}{AT \left[\frac{p_2 \times 76}{14.7}\right]} \left(\frac{dp}{dt}\right)$$
Equation S1

where, *P* refers to the permeability of a membrane to a gas and its unit is in Barrer (1 Barrer =  $1 \times 10^{-10}$  cm<sup>3</sup> (STP) cm cm<sup>-2</sup> sec<sup>-1</sup> cmHg<sup>-1</sup>); *V* is the permeate volume (cm<sup>3</sup>); *L* is the film thickness (cm); *A* is the effective membrane area (cm<sup>2</sup>); *T* is the temperature (K); and *p*<sub>2</sub> is the feed gas pressure (psia). Ideal selectivity ( $\alpha_{A/B}$ ) was calculated as the ratio of the single gas permeability for a given gas pair.

**Table S2.** The aging study of the polymer films was done by storing the samples under ambient conditions after initial membrane performance measurements for as-cast samples; with periodical storage (15, 30, 45, 60 and 180 days). The permeation measurements were carried out on these aged membranes after evacuating overnight to remove any adsorbed air and any other potential impurities from storage. For each test, single gas measurements were recorded sequentially using He, H<sub>2</sub>, N<sub>2</sub>, O<sub>2</sub>, CH<sub>4</sub>, and CO<sub>2</sub> at 2 bar feed pressure, in duplicate (deviation with  $\pm$  10%) at 25  $\pm$  1 °C. Before changing gases for permeation testing, the membrane and permeation system were evacuated under low vacuum for at least 2 hours to completely remove prior gas and ensure the measurement accuracy.

|           | Permeability (Barrer) |                    |                            |                                    |                     |                     | Ideal Selectivity              |                                 |                                  |                                |
|-----------|-----------------------|--------------------|----------------------------|------------------------------------|---------------------|---------------------|--------------------------------|---------------------------------|----------------------------------|--------------------------------|
| Table S2  | P(He)                 | P(H <sub>2</sub> ) | <b>P</b> (N <sub>2</sub> ) | <b>P</b> ( <b>O</b> <sub>2</sub> ) | P(CH <sub>4</sub> ) | P(CO <sub>2</sub> ) | H <sub>2</sub> /N <sub>2</sub> | H <sub>2</sub> /CH <sub>4</sub> | CO <sub>2</sub> /CH <sub>4</sub> | O <sub>2</sub> /N <sub>2</sub> |
| P-1       | 632                   | 1651               | 85                         | 354                                | 104                 | 1987                | 19.5                           | 16.0                            | 19.2                             | 4.2                            |
| P-15      | 544                   | 1401               | 56                         | 259                                | 64                  | 1411                | 24.8                           | 21.7                            | 21.9                             | 4.6                            |
| P-30      | 549                   | 1293               | 43                         | 217                                | 49                  | 1126                | 30.1                           | 26.2                            | 22.8                             | 5.0                            |
| P-45      | 518                   | 1264               | 35                         | 191                                | 38                  | 949                 | 36.4                           | 33.6                            | 25.2                             | 5.4                            |
| P-60      | 518                   | 1175               | 30                         | 163                                | 33                  | 787                 | 38.7                           | 35.2                            | 23.6                             | 5.4                            |
| P-180     |                       | Membrane broke     |                            |                                    |                     |                     |                                |                                 |                                  |                                |
| M-5%-1    | 1299                  | 2907               | 108                        | 518                                | 120                 | 2747                | 27.0                           | 24.2                            | 22.9                             | 4.8                            |
| M-5%-15   | 1012                  | 2078               | 50                         | 268                                | 50                  | 1224                | 41.5                           | 41.4                            | 24.4                             | 5.4                            |
| M-5%-30   | 935                   | 1801               | 33                         | 192                                | 30                  | 797                 | 54.3                           | 59.2                            | 26.2                             | 5.8                            |
| M-5%-45   | 870                   | 1593               | 24                         | 142                                | 20                  | 554                 | 65.4                           | 78.2                            | 27.2                             | 5.9                            |
| M-5%-60   | 805                   | 1335               | 17                         | 104                                | 17                  | 447                 | 78.0                           | 77.8                            | 26.0                             | 6.1                            |
| M-5%-180  | 543                   | 644                | 6                          | 33                                 | 7                   | 122                 | 102.9                          | 92.4                            | 17.5                             | 5.5                            |
| M-10%-1   | 2230                  | 4886               | 209                        | 941                                | 260                 | 4655                | 23.4                           | 18.8                            | 17.9                             | 4.5                            |
| M-10%-15  | 1738                  | 3521               | 91                         | 527                                | 94                  | 2197                | 38.7                           | 37.4                            | 23.3                             | 5.8                            |
| M-10%-30  | 1577                  | 2973               | 61                         | 380                                | 62                  | 1494                | 48.9                           | 47.6                            | 23.9                             | 5.7                            |
| M-10%-45  | 1430                  | 2644               | 48                         | 297                                | 46                  | 1175                | 55.2                           | 57.9                            | 25.7                             | 6.2                            |
| M-10%-60  | 1372                  | 2440               | 40                         | 255                                | 39                  | 956                 | 61.0                           | 62.6                            | 25.5                             | 6.4                            |
| M-10%-180 | 1047                  | 1400               | 15                         | 87                                 | 17                  | 34                  | 96.5                           | 85.1                            | 21.0                             | 5.8                            |

**Notice**: P: TPIM-1, M: MMMs, 5%: 5wt. % PAF-1 loading, 10%: 10wt. % PAF-1 loading, 1, 15, 30, 45, 60, 180: samples aged for 1, 15, 30, 45, 60, 180 days. Operation conditions: single gas, 2 atm, 25±1°C

## 9. Positron Annihilation Lifetime Spectroscope (PALS)

Mean pore size and intensity were obtained through Positron Annihilation Lifetime Spectroscopy. The membrane samples were cut and stacked into two 2 mm thick piles and each placed on either side of the positron source sealed in a Mylar envelope (<sup>22</sup>NaCl, 1.8 MBq). The samples were then placed in a vacuum cell (5 x 10<sup>-6</sup> torr) between two EG&G Ortec fast-fast coincidence spectrometers. The timing resolution of the system was 240 ps and a minimum of 4 files of  $4.5 \times 10^6$  integrated counts were collected. The spectra were analysed using LT-v9 software <sup>7</sup> and fitted to 4 component lifetimes. The first lifetime  $(\tau_1)$ was fixed to 0.125 ns and attributed to para-positronium (bound state of a positron and an electron with opposite spin) annihilation. The second component  $(\tau_2)$  was due to free annihilation of the positron with free electrons within the sample. The longer lifetimes  $(\tau_3, \tau_4)$ were due to ortho-positronium annihilation of the positron in a bound state of an electron in the same spin state. These longer lifetimes are due to annihilation within the free volume of the membranes and indicate the presence of a bimodal porosity in the PTMSP and the composite samples. The lifetimes were calculated using the Relative Tao-Eldrup relationship.<sup>8-10</sup> The pore size distribution was a visual representation adapted using the PAScual software.<sup>11</sup> The fractional free volume (FFV) calculation<sup>12</sup> was based on the equation below.

$$FFV_{PALS} = CV_{PALS}I_{PALS}$$
 Equation S2

Where,

017

$$V_{PALS} = \frac{4}{3}\pi R_{PALS}^{3}$$
 Equation S3

Here, C is the empirical constant, 0.0018 Å,  $V_{PALS}$  is the average volume of the pore elements calculated using the radius, R<sub>PALS</sub> determined from the PALS lifetime and I<sub>PALS</sub> is the associated Intensity. Separate pore size FFV (FFV 3 and FFV 4) and total FFV are listed as below

| Table S3                                      | Positron Annihilation Lifetime Spectroscopy (PALS) |                     |                     |                         |                          |                          |                   |                    |                    |
|-----------------------------------------------|----------------------------------------------------|---------------------|---------------------|-------------------------|--------------------------|--------------------------|-------------------|--------------------|--------------------|
| Samples name                                  | Tau 3 (ns)                                         | Tau 4<br>(ns)       | I3 (%)              | I4 (%)                  | TE<br>Diameter3<br>(nm)  | TE<br>Diameter4<br>(nm)  | FFV 3<br>(%)      | FFV 4<br>(%)       | FFV<br>total (%)   |
| TPIM-2-fresh                                  | <b>1.85</b><br>(±0.14)                             | <b>6.73</b> (±0.12) | <b>5.22</b> (±0.18) | <b>11.94</b><br>(±0.28) | <b>0.540</b><br>(±0.03)  | <b>1.090</b><br>(±0.009) | <b>0.8</b> (±0.1) | 14.8<br>(±0.7)     | 15.5<br>(±0.9)     |
| TPIM-2-aged                                   | <b>1.98</b> (±0.13)                                | <b>7.12</b> (±0.11) | <b>4.66</b> (±0.11) | 11.00<br>(±0.29)        | <b>0.568</b><br>(±0.024) | <b>1.124</b><br>(±0.008) | <b>0.8</b> (±0.1) | 14.7<br>(±0.7)     | 15.5<br>(±0.8)     |
| TPIM-2@10%<br>PAF-1<br>fresh                  | <b>2.13</b> (±0.06)                                | <b>6.77</b> (±0.05) | <b>6.48</b> (±0.09) | <b>11.98</b> (±0.23)    | <b>0.594</b> (±0.01)     | <b>1.098</b><br>(±0.003) | <b>1.3</b> (±0.1) | <b>14.9</b> (±0.4) | <b>16.2</b> (±0.5) |
| TPIM-2@10%<br>PAF-1<br>aged                   | <b>1.97</b> (±0.13)                                | <b>6.70</b> (±0.08) | <b>5.64</b> (±0.10) | <b>13.43</b> (±0.23)    | <b>0.564</b> (±0.02)     | <b>1.107</b> (±0.006)    | <b>1.0</b> (±0.1) | 17.2<br>(±0.6)     | <b>18.1</b> (±0.7) |
| Note: PALS was run for membrane aged 6 months |                                                    |                     |                     |                         |                          |                          |                   |                    |                    |

### **10. Solution Viscosity Measurements**

Viscosity measurements were made using a SCHOTT AV350 Viscometer (standard ASTM D445) using 52610/I U-tube calibrated with a de-ionized water standard at 20 °C. Samples of pure solvent, PAF-1 in solvent, pure polymer in solvent and mixed polymer with additives in solvent were made. For pure additives in solvent: 22.5 and 45 mg PAF-1 was placed into 15 ml anhydrous chloroform. For pure polymer solution: 450 mg TPIM-2 was dissolved into 15 ml anhydrous chloroform. Mixed solutions for 5 and 10 wt. % MMMs were made by combining 22.5 mg, 45 mg PAF-1 and TPIM-2 (with total amount of 450 mg) into 15 ml anhydrous chloroform. Viscosity was measured after stirring for 24 h. Results are averaged from 10 duplicates.

| Table S4Visco   | Viscosity Measurements            |            |  |  |  |  |  |
|-----------------|-----------------------------------|------------|--|--|--|--|--|
| Samples         | Agitated for 24<br>centipoise, Cp | hrs<br>+/- |  |  |  |  |  |
| Chloroform      | 0.42                              | 0.0041     |  |  |  |  |  |
| 5% PAF-1        | 0.44                              | 0.0022     |  |  |  |  |  |
| 10% PAF-1       | 0.46                              | 0.00061    |  |  |  |  |  |
| TPIM-2          | 3.17                              | 0.071      |  |  |  |  |  |
| TPIM-2@5%PAF-1  | 3.05                              | 0.030      |  |  |  |  |  |
| TPIM-2@10%PAF-1 | 3.04                              | 0.024      |  |  |  |  |  |

Units: centipoise, cp = $10^{-3}$ Pa; DI water standard (20 °C) =1.0020 cp. Uncertainty is reported as one standard deviation of measured data, after excluding outliers.

# 11. References

- V. Abetz, T. Brinkmann, M. Dijkstra, K. Ebert, D. Fritsch, K. Ohlrogge, D. Paul, K. V. Peinemann, S. Pereira-Nunes, N. Scharnagl and M. Schossig, *Adv. Eng. Mater.*, 2006, 8, 328-358.
- 2. B. S. Ghanem, R. Swaidan, X. Ma, E. Litwiller and I. Pinnau, *Adv. Mater.*, 2014, **26**, 6696-6700.
- 3. M. Carta, M. Croad, R. Malpass-evans, J. C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lanč and N. B. McKeown, *Adv. Mater.*, 2014, **26**, 3526-3531.
- 4. R. Hou, S. J. D. Smith, C. D. Wood, R. J. Mulder, C. H. Lau, H. Wang and M. R. Hill, *ACS Appl. Mater. Interfaces*, 2019, **11**, 6502-6511.
- 5. S. J. D. Smith, B. P. Ladewig, A. J. Hill, C. H. Lau and M. R. Hill, *Sci. Rep.*, 2015, 5, 7823.
- 6. R. Castro-Muñoz, V. Fila and C. Dung, Chem. Eng. Commun., 2017, 204.
- 7. J. Kansy, Nucl. Instrum. Methods Phys. Res., Sect. A, 1996, 374, 235-244.
- 8. S. Tao, J. Chem. Phys., 1972, 56, 5499-5510.
- 9. M. Eldrup, D. Lightbody and J. N. Sherwood, *Chem. Phys.*, 1981, **63**, 51-58.
- 10. T. Dull, W. Frieze, D. Gidley, J. Sun and A. Yee, *J. Phys. Chem. B.*, 2001, **105**, 4657-4662.
- 11. C. Pascual-Izarra, A. W. Dong, S. J. Pas, A. J. Hill, B. J. Boyd and C. J. Drummond, *Nucl. Instrum. Methods Phys. Res., Sect. A*, 2009, **603**, 456-466.
- 12. Yuri Yampolskii and i. Shantarovich, *John Wiley & Sons, Ltd. ISBN: 0-470-85345-X*, **2006**.