Supporting Information

Efficient CO₂ Capture from Ambient Air with Amine-Functionalized

Mg–Al Mixed Metal Oxides

Xuancan Zhu,^a Tianshu Ge,^{*a} Fan Yang,^a Meng Lyu,^b Chunping Chen,^b Dermot O'Hare,^b and Ruzhu Wang^{*a}

a Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China. E-mail: baby_wo@sjtu.edu.cn; rzwang@sjtu.edu.cn
b Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK

	Mg _{0.55} A	Al-CO ₃	Mg ₂ Al-CO ₃		Mg ₃ Al-CO ₃	
	Mg2852	A13961	Mg2852	A13961	Mg2852	Al3961
Units	wt.%	wt.%	wt.%	wt.%	wt.%	wt.%
Avg	9.732	20.13	18.42	10.96	22.08	8.567
Stddev	0.019	0.05	0.08	0.08	0.14	0.062
% RSD	0.1908	0.2547	0.4509	0.6931	0.6349	0.7202
Rep #1	9.726	20.12	18.50	11.03	22.29	8.658
Rep #2	9.711	20.08	18.47	11.03	21.96	8.526
Rep #3	9.737	20.14	18.32	10.88	22.05	8.552
Rep #4	9.755	20.20	18.38	10.91	22.03	8.530
<i>x</i> (set)	0.55		2		3	
x (exp)	0.537		1.866		2.861	

Table S1. ICP-OES results of Mg and Al contents in the prepared MMO precursors.

Figure S1. XRD patterns of (a) MMO precursors and (b) MMOs.

Figure S2. TGA and DTG analysis of (a) $Mg_{0.55}Al-CO_3$, (b) Mg_2Al-CO_3 , and (c) Mg_3Al-CO_3 synthesized by co-precipitation with water washing and acetone washing.

Figure S3. N₂ adsorption-desorption isotherms at 77 K and pore size distributions of (a) SBA-15, (b) Mg_{0.55}Al-O, (c) Mg₂Al-O, (d) Mg₃Al-O, (e) γ -Al₂O₃, (f) MgO.

Sample	$S_{\rm BET}({ m m}^2{ m g}^{-1})$	$D_{\rm p}({\rm nm})$	$V_{\rm p}({\rm cm}^3{\rm g}^{-1})$	$V_{\rm micro} ({\rm cm}^3{\rm g}^{-1})$
SBA-15	526	7.4	0.959	0.027
Mg _{0.55} Al-O	185	24.9	1.150	0.006
Mg ₂ Al-O	205	15.6	0.728	0
Mg ₃ Al-O	176	20.5	0.904	0.002
γ -Al ₂ O ₃	172	31.6	1.172	0.023
MgO	23	8.3	0.047	0

 Table S2. Textural properties of the supports.

 S_{BET} Specific surface area (m² g⁻¹) D_p Average pore size (nm) V_p Average pore volume (cm³ g⁻¹)

 V_{micro} Average micropore volume (cm³ g⁻¹)

Figure S4. Characterization of CO_2 adsorption performance of poly(ethylenimine) (PEI)-based adsorbents in ultradilute conditions: screening of CO_2 adsorption isotherms at 25 °C for 33 wt.% PEI-impregnated supports.

Figure S5. Characterization of CO_2 adsorption performance of poly(ethylenimine) (PEI)-based adsorbents in ultradilute conditions: effect of PEI weight ratios for PEI impregnated SBA-15 and Mg_{0.55}Al-O.

Figure S6. Characterization of CO_2 adsorption performance of poly(ethylenimine) (PEI)-based adsorbents in ultradilute conditions: CO_2 adsorption isotherms of PEI67/Mg_{0.55}Al-O at different adsorption temperatures.

Figure S7. Fitting of CO₂ adsorption heat of PEI67/Mg_{0.55}Al-O at the CO₂ uptake of 1 mmol g^{-1} .

The isotherm data at 35, 45, 55, 65 °C was used to evaluate the adsorption of heat of PEI67/Mg_{0.55}Al-O. According to the Clausius–Clapeyron equation in Equation 1, The isosteric heat of adsorption, Q_{st} , can be determined by the slope of the fit line of ln p versus 1/T.

$$(ln p)_{q} = \left(\frac{Q_{st}}{R}\right) \left(\frac{1}{T}\right) + C$$
(1)

p CO₂ pressure (mbar)

$$Q_{st}$$
 Adsorption of heat (J mol⁻¹)

- *R* Ideal gas constant (J mol⁻¹ K⁻¹)
- T Temperature (K)

Figure S8. Characterization of CO_2 adsorption performance of poly(ethylenimine) (PEI)-based adsorbents in ultradilute conditions: temperature programmed desorption of PEI-impregnated SBA-15 and Mg_{0.55}Al-O.

Sample	$S_{\rm BET}({ m m}^2{ m g}^{-1})$	$D_{\rm p}({\rm nm})$	$V_{\rm p}({\rm cm}^3{\rm g}^{-1})$	$V_{\rm micro} ({\rm cm}^3{\rm g}^{-1})$
PEI33/Mg _{0.55} Al-O	110	27.0	0.642	0.010
PEI50/Mg _{0.55} Al-O	31	29.5	0.258	0.008
PEI67/Mg _{0.55} Al-O	20	4.4	0.020	0.002
PEI33/SBA-15	166	8.6	0.360	0.000
PEI50/SBA-15	17	8.1	0.033	0.000
PEI67/SBA-15	8	5.2	0.010	0.000

Table S3. Textural properties of the PEI/supports.

Figure S9. Thermal decomposition of PEI-based SBA-15 and $Mg_{0.55}Al$ -O from 50 to 450 °C at a heating rate of 5 °C min⁻¹ under N₂ flow.

Figure S10. CO₂ uptake of (a) PEI67/Mg_{0.55}Al-O and (b) PEI67/SBA-15 at 400 ppm CO₂ and 25 °C after desorption at different temperatures.

Figure S11. Experimental set-up of home-made fixed bed microreactor system.

The home-built fixed bed with a height of 120 mm and internal diameter of 6 mm was used to evaluate the cyclic stability of sample in the absence/presence of moisture. The flow rate of inlet gases (N₂, 400 ppm CO_2/N_2) was controlled by mass flow controllers (maximum flow rate: 120 mL min⁻¹) and the flow direction could be automatically switched via magnetic valves. The scrubbing bottle in a thermostatic water bath was used to generate 3–5% moisture for the inlet gases, where the water content before and after the fixed bed was monitored using temperature and humidity sensors. The fixed bed as a stainless-steel tube was sequenced filled with silica sand, silica wool, samples (0.8 g), silica wool, and silica sand to insure all the samples was within the flat-temperature zone. The CO₂ concentration in the outlet gas after passing through a CaCl₂ drying tube was continuously detected by an THA100S non-dispersive infrared analyzer (0–600 ppm, ±2% full scale).

During the cyclic operation, the fixed bed was first heated by a temperature control stove to 120 °C followed by a counter-current N_2 purge with a flow rate of 100 mL min⁻¹ for 60 min. The circulating oil bath was then opened to rapidly cool down the fixed bed to 25 °C. In the adsorption step, 400 ppm CO₂ in N₂ with a flow rate of 100 mL min⁻¹ was co-currently added into the fixed bed for 120 min. The CO₂ adsorption capacity in the stability tests was calculated according to equation 2.

$$q = \frac{\int_{0}^{t} (C_{CO_2,in} - C_{CO_2,out})Q_{in}dt}{m_{sample}}$$
(2)

$$q \qquad \text{CO}_2 \text{ adsorption capacity (mol kg^{-1})}$$

$$C_{CO_2,in} \qquad \text{Inlet gas CO}_2 \text{ concentration (mol m^{-3})}$$

$$C_{CO_2,out} \qquad \text{Outlet gas CO}_2 \text{ concentration (mol m^{-3})}$$

$$Q_{in} \qquad \text{Inlet gas flow rate (m^3 s^{-1})}$$

$$m_{sample} \qquad \text{Sample initial mass (kg)}$$

Figure S12. CO_2 breakthrough curves of PEI67/Mg_{0.55}Al-O during multi cycles (a) for adsorption in dry CO_2 and desorption in dry N_2 , (b) for adsorption in wet CO_2 and desorption in dry N_2 , (c) for adsorption in wet CO_2 and desorption in wet N_2 , and (d) after reaching steady state.