Supporting Information:

Highly Stable Ordered Intermetallic PtCo Alloy Catalyst Supported on Graphitized Carbon Containing Co@CN for Oxygen Reduction Reaction

Won Suk Jung^{a*}, Woong Hee Lee^b, Hyung-Suk Oh^{b, c, d*}, and Branko N. Popov^{e*}

- ^{*a*} Department of Chemical Engineering, Hankyong National University, Jungang-ro 327, Anseong-si, Gyeonggi-do, 17579, Republic of Korea
- ^b Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- ^c Division of Energy and Environmental Technology, KIST school, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
- ^{*d*} KHU-KIST Department of Conversing Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
- ^e Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA

* Corresponding author: jungw@khnu.ac.kr, hyung-suk.oh@kist.re.kr, popov@cec.sc.edu

Figure S1. HR-TEM image of GC prepared at 1700 °C for 2 h under N_2 atmosphere.

	BE [eV]	FWHM	at. %
Pyridinic- N	398.55	1.374	27.8
Pyrrolic-N and/or pyridone-N	400.18	2.389	37.0
Quaternary-N	401.12	3.026	19.3
Pyridinic-N ⁺ -O ⁻	403.70	4.991	15.9

 Table S1. Characteristics of Co@CN/GC obtained from XPS N1s peak.

	Co@CN/GC			СВ			
-	BE [eV]	FWHM	at. %	BE [eV]	FWHM	at. %	
graphitic	284.59	0.803	67.7	284.29	0.892	64.4	
defect	285.36	0.811	9.8	285.09	1.599	20.4	
amine	286.02	1.014	4.0	-	-	-	
alcohol and ether	286.54	1.793	8.2	286.57	1.377	4.0	
carbonyl	288.01	1.317	2.4	287.98	2.293	4.3	
carboxyl	289.11	1.314	1.9	289.09	2.861	1.1	
carbonate	290.37	1.448	2.4	290.29	2.075	4.6	
π-π* shake-up satellite	291.52	1.874	3.6	291.58	1.47	1.1	

 Table S2. Characteristics of Co@CN/GC and CB obtained from XPS C1s peak.

Figure S2. Co 2p XPS spectra of PtCo/NGC

	PtCo/NGC				
	BE [eV]	FWHM	at. %		
Co ⁰	778.38	0.734	4.2		
Co(II)	780.14	3.843	62.0		
Satellites	784.90	6.611	33.9		

 Table S3. Characteristics of PtCo/NGC obtained from XPS Co 2p peak.

Figure S3. (a) HAADF-STEM image of Pt/Co@CN/GC. EDS elemental mapping images of Pt/Co@CN/GC: (b, c) overlap, (d) Pt, (e) Co, and (f) carbon. (g, h) EDS cross-sectional compositional line profile of Pt/Co@CN/GC.

Figure S4. (a) HAADF-STEM image of PtCo/NGC which heat-treated the Pt/Co@CN/GC catalyst for 30 min. EDS elemental mapping images of PtCo/NGC (30 min): (b, c) overlap, (d) Pt, (e) Co, and (f) carbon. (g, h) EDS cross-sectional compositional line profile of PtCo/NGC (30 min).

Figure S5. Mass activity of Pt/Co@CN/GC and PtCo/NGC with different heat-treatment duration time (30 min, 1 h and 2 h) at 800 °C. Commercial Pt/C (TEC10E50E, Tanaka Kikinzoku Kogyo K.K.) was used as a catalyst for the anode.

Figure S6. (a) HR-TEM and (b) HAADF-STEM images of PtCo/NGC after AST measurement. (c, d) Elemental mapping images of PtCo/NGC: Pt (red), Co (green), and Carbon (blue).

Catalysts (Pt loading at cathode)	Cell Temp. [°C]	AST conditions (cycle No. and potential range)	Initial mass activity @ 0.9 V _{iR-free} [A mg ⁻¹]	Activity loss [%]	Initial ECSA $[m^2 g_{Pt}^{-1}]$	ECSA loss [%]	Performance loss	Ref No.
PtCo/NGC (0.1 mg cm ⁻²)	80	30,000 cycles (0.6 – 1.0 V)	0.45	53	74	27	34 mV at 800 mA cm ⁻²	This work
$Pt_{2.6}Co TONs/C$ (0.1 mg cm ⁻²)	80	30,000 cycles (0.6 – 0.95 V)	0.294	24	99	17	-	Xia et al. (1)
PtNi@Pt/C (0.2 mg cm ⁻²)	80	30,000 cycles (0.6 – 1.0 V)	-	-	-	22	ca. 100 mV at 800 mA cm ⁻²	Lee et al.* (2)
Ga-PtNi/C (0.15 mg cm ⁻²)	65	30,000 cycles (0.6 – 1.0 V)	-	-	-	-	33% loss (current density) at 0.6 V	Cho et al. (3)
$\frac{\text{Pt/IrO}_2\text{-TiO}_2}{(0.45 \text{ mg cm}^{-2})}$	80	10,000 cycles (0.6 – 1.0 V)	0.088	19	43	60	100 mV at 800 mA cm ⁻²	Kotz et al. (4)
$Pd/C@Pt_{skin}$ (0.033 mg cm ⁻²)	65	30,000 cycles (0.6 – 1.0 V)	0.3	-	92.3	-	-	Hou et al. (5)
Dealloyed PtNi ₃ /C (0.1 mg cm ⁻²)	80	30,000 cycles (0.6 – 1.0 V)	0.5	0	37	29	-	Mukerjee et al. (6)
$\frac{\text{CNF/TiO}_2\text{-Pt}}{(0.4 \text{ mg cm}^{-2})}$	75	-	0.282	-	44.97	-	-	Shul et al. (7)
GO coated Pt/C (0.2 mg cm^{-2})		30,000 cycles (0.6 – 1.0 V)	-	-	48.8	33	-	Rafailovich et al. (8)
Pt on NbO _x /C (0.1 mg cm^{-2})	80	30,000 cycles (0.6 – 0.95 V)	0.328	36	29	51	-	Xu et al. (9)
PtNi/C (0.1 mg cm ⁻²)	80	30,000 cycles (0.6 – 1.0 V)	-	58	42.4	59	$\begin{array}{c} ca.50\ m\ V_{iR\text{-}free}\\ at\ 800\ mA\ cm^{-2} \end{array}$	Mustain et al.* (10)
PtCuCO/C (0.2 mg cm ⁻²)	80	30,000 cycles (0.5 – 1.0 V)	0.42	40.5	-	51	-	Strasser et al. (11)

 Table S4. Summary of the accelerated stress test (AST) results for oxygen reduction reaction in PEMFCs

* Performance loss represented here is estimated from V-i polarization curves.

References

- M. Shen, M. Xie, J. Slack, K. Waldrop, Z. Chen, Z. Lyu, S. Cao, M. Zhao, M. Zhao, M. Chi, P. N. Pintauro, R. Cao, Y. Xia, Pt-Co truncated octahedral nanocrystals: a class of highly active and durable catalysts toward oxygen reduction. *Nanoscale* 12, 11718-11727 (2020).
- 2. J. Choi, J. Jang, C. Roh, S. Yang, J. Kim, J. Lim, S. J. Yoo, H. Lee, Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell. *Applied Catalysis B: Environmental* **225**, 535-537 (2018).
- 3. J. Lim, H. Shin, M. Kim, H. Lee, K. Lee, Y. Kwon, D. Song, S. Oh, H. Kim, E. Cho, Ga–doped Pt–Ni octahedral nanoparticles as a highly active and durable electrocatalyst for oxygen reduction reaction. *Nano Letters* **18**, 2450-2458 (2018).
- 4. A. Pătru, A. Rabis, S. E. Temmel, R. Kotz, T. J. Schmidt, Pt/IrO2–TiO2 cathode catalyst for low temperature polymer electrolyte fuel cell–Application in MEAs, performance and stability issues. *Catalysis Today* **262**, 161-169 (2016).
- 5. S. Hong, M Hou, H. Zhang, Y. Jiang, Z. Shao, B. Yi, A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition. *Electrochimica Acta* **245**, 403-409 (2017).
- 6. Q. Jia, J. Li, K. Caldwell, D. E. Ramaker, J. M. Ziegelbauer, R. S. Kukreja, A. Kongkanand, S. Mukerjee, Circumventing metal dissolution induced degradation of Pt-alloy catalysts in proton exchange membrane fuel cells: revealing the asymmetric volcano nature of redox catalysis. *ACS Catalysis* **6**, 928-938 (2016).
- 7. Y. Jeon, Y. Ji, Y. I. Cho, C. Lee, D. Park, Y. Shul, Oxide–carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst. *ACS nano* **12**, 6819-6829 (2018).
- 8. L. Wang, S. Bliznakov, R. Isseroff, Y. Zhou, X. Zuo, A. Raut, W. Wang, M. Cuiffo, T. Kim, M. H. Rafailovich, Enhancing proton exchange membrane fuel cell performance via graphene oxide surface synergy. *Applied Energy* **261**, 114277 (2020).
- 9. C. Xu, J.Yang, E. Liu, Q. Jia, G. M. Veith, G. Nair, S. D. Pietro, K. Sun, J. Chen, P. Pietrasz, Z. Lu, M. Jagner, K. K. Gath, S. Mukerjee, J. R. Waldecker, Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbOx templated carbon support. *Journal of Power Sources* **451**, 227709 (2020).
- 10. X. Peng, S. Zhao, T. J. Omasta, J. M. Roller, W. E. Mustain, Activity and durability of Pt-Ni nanocage electocatalysts in proton exchange membrane fuel cells. *Applied Catalysis B: Environmental* **203**, 927-935 (2017).
- 11. K. C. Neyerlin, R. Srivastava, C. Yu, P. Strasser, Electrochemical activity and stability of dealloyed Pt–Cu and Pt–Cu–Co electrocatalysts for the oxygen reduction reaction (ORR). *Journal of Power Sources* **186**, 261-267 (2009).