Electronic Supplementary Information

A general approach to the synthesis of transition metal phosphides nanoarrays on MXene nanosheets for pH-universal hydrogen evolution and alkaline overall water splitting

Liang Yan, ‡*a Bing Zhang, ‡^b Shangyou Wu,^b and Jianlin Yu^b

^a School of Chemistry and Materials Engineering, Huizhou University, No. 46 Yanda
 Road, Huizhou, 516007, China
 ^b Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, No. 100 Waihuan Xi
 Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China

‡ These authors contributed to this work equally.

* Corresponding author. E-mail: yanliang@hzu.edu.cn

Figure S1. XRD patterns of Co-LDH/Ti₃C₂ MXene.

Figure S2. XPS survey spectra of CoP/Ti₃C₂ MXene and Ti₃C₂ MXene.

Figure S3. HER polarization curves of CoP/Ti $_3C_2$ MXene catalysts with varied CoP content measured in 1.0 M KOH.

Figure S4. Nyquist plots of the CoP/Ti₃C₂ MXene and MXene-free CoP for HER.

Figure S5. Cyclic voltammograms (CV) curves of (a) CoP/Ti₃C₂ MXene, (b) CoP+Ti₃C₂ MXene, and (c) MXene-free CoP in the region of 0-0.10 V in 1.0 M KOH at various scan rates. (d) Plots of current density differences (Δj) against scan rates of the three catalysts at 0.05 V, where Δj is the difference between anodic and cathodic current densities in CV curves at different scan rates.

Figure S6. The LSV curves of samples normalized to the ECSA.

The ECSA is acquired from the C_{dl} based on the equation:

$$ECSA = C_{dl}/C_s$$

where C_s is the specific capacitance of the catalyst. From the literature, the specific capacitance was generally found to be in the range of 20-60 μ F cm⁻², we assumed $C_s = 40 \ \mu$ F cm⁻².¹

Figure S7. OER polarization curves of CoP/Ti_3C_2 MXene catalysts with varied CoP content measured in 1.0 M KOH.

Figure S8. Nyquist plots of the CoP/Ti₃C₂ MXene and MXene-free CoP for OER.

Figure S9. Cyclic voltammograms (CV) curves of (a) CoP/Ti₃C₂ MXene, (b) CoP+Ti₃C₂ MXene, and (c) MXene-free CoP in the region of 0.9-1.0 V in 1.0 M KOH at various scan rates. (d) Plots of current density differences (Δj) against scan rates of the three catalysts at 0.95 V, where Δj is the difference between anodic and cathodic current densities in CV curves at different scan rates.

Figure S10. XRD patterns of CoP/Ti₃C₂ MXene after OER test.

Figure S11. FTIR spectrum of CoP/Ti₃C₂ MXene after OER test.

Figure S12. Raman spectra of CoP/Ti $_3C_2$ MX ene after OER test.

Figure S13. XPS spectra of (a) Co 2p, (b) P 2p, and (c) O 1s of the CoP/Ti₃C₂ MXene

before and after HER test in 1.0 M KOH.

Figure S14. XRD patterns of CoP/Ti₃C₂ MXene after HER test in 1.0 M KOH.

Figure S15. FTIR spectrum of CoP/Ti₃C₂ MXene after HER test in 1.0 M KOH.

The peaks at 1636 and 3426 cm⁻¹ originated from the stretching vibration of absorbed water molecules. The bands at 700-1380 cm⁻¹ (blue shadows) were associated with the vibration characteristics of Co and P.²

Figure S16. Raman spectrum of CoP/Ti $_3C_2$ MXene before and after HER test in 1.0 M KOH.

Figure S17. The amount of gas theoretically calculated and experimentally measured versus time for overall water splitting of CoP/Ti₃C₂ MXene.

Figure S18. SEM images of CoP/Ti $_3C_2$ MXene after (a) HER and (b) OER stability test.

Figure S19. (a) SEM image, (b) XRD patterns, (c) EDX spectrum, and (d-h) Elemental mapping of Ni_2P/Ti_3C_2 MXene.

Figure S20. (a) SEM image, (b) XRD patterns, (c) EDX spectrum, and (d-h) Elemental mapping of FeP/Ti₃C₂ MXene.

Figure S21. (a) SEM image, (b) XRD patterns, (c) EDX spectrum, and (d-h) Elemental mapping of Cu_3P/Ti_3C_2 MXene.

Catalysts	n (mV) at	Tafel slope	References
Cuurysis	10 mA cm^{-2}	mV dec ⁻¹	Tereferees
CoP/CC	209	129	J. Am. Chem. Soc. 2014, 136, 7587
CoP film	94	42	Angew. Chem. Int. Ed. 2015, 54, 6251
CoP/NC	154	51	<i>Chem. Mater.</i> 2015 , <i>27</i> , 7636
CoP NS/C	111	70.9	Green Chem. 2016, 18, 2287
CoNiP@NF	155	113	J. Mater. Chem. A 2016, 4, 10195
CoP@NC	129	58	ACS Catal. 2017, 7, 3824
Co/CoP	193	73.8	Adv. Energy Mater. 2017, 7, 1602355
CoP@BCN	215	52	Adv. Energy Mater. 2017, 7, 1601671
CoP/CC	112	74.8	Chem. Sci. 2018, 9, 1970
CoP/NCNHP	115	66	J. Am. Chem. Soc. 2018, 140, 2610
NC-CNT/CoP	120	73	J. Mater. Chem. A 2018, 6, 9009
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	196	NA	Adv. Energy Mater. 2018, 8, 1801127
CoP ₃ /CF	100	93.1	Small 2019, 15, 1904681
CoP/NC	143	91	Adv. Funct. Mater. 2019, 29, 1807976
CoP/CC	88	66	ACS Catal. 2019, 9, 3744
CoP/NPC/TF	80	50	Adv. Energy Mater. 2019, 9, 1803970
CoP/CF	75	65	Angew. Chem. Int. Ed. 2019, 58, 4679
Co _{0.31} Mo _{1.69} C/MXene/NC	75	43	Adv. Energy Mater. 2019, 9, 1901333
Ru_{SA} -N-S-Ti ₃ C ₂ T _x	99	NA	Adv. Mater. 2019, 31, 1903841
NiFe-LDH/MXene/NF	132	70	Nano Energy 2019 , 63, 103880
MoSe ₂ /Ti ₃ C ₂ T _x	95	91	Electrochim. Acta 2019, 326, 134976
$Co-MoS_2/Mo_2CT_x$	112	82	Nanoscale 2019, 11, 10992
CoP/CC	122	83.3	Adv. Funct. Mater. 2020, 30, 1909618
CoP@rGO	170	61.72	Appl. Catal. B Environ. 2020, 265,118576
CoP NFs	136	56.2	ACS Catal. 2020, 10, 412
CoP@NF	155	96.98	Nano Energy 2020 , 67, 104174
CoP/CC	87	72	Appl. Catal. B Environ. 2020, 253, 21
CoP/PC	76	NA	Small 2020, 16, 1900550
Mo ₂ C/Ti ₃ C ₂ T _x @NC	75	59.2	J. Mater. Chem. A 2020, 8, 7109
CoP/Ti ₃ C ₂ MXene	102	68.7	This work

 Table S1. Comparison of HER catalytic performance for non-precious metal
 electrocatalysts in 1.0 M KOH.

NA: Not available

5			
Catalysts	$\eta \left(mV\right)$ at	Tafel slope	References
	10 mA cm ⁻²	mV dec ⁻¹	
CoP/CC	67	51	J. Am. Chem. Soc. 2014, 136, 7587
CoP/CNT	122	54	Angew. Chem. Int. Ed. 2014, 53, 6710
CoP/Ti	~75	50	Angew. Chem. Int. Ed. 2014, 53, 5427
Co ₂ P NPs	95	45	Chem. Mater. 2015, 27, 3769
CoNiP@NF	60	39	J. Mater. Chem. A 2016, 4, 10195
Mo ₂ CT _x MXene	283	NA	ACS Energy Lett. 2016, 1, 589
CoP@BCN-1	87	46	Adv. Energy Mater. 2017, 7, 1601671
MoS ₂ /Ti ₃ C ₂ -MXene@C	135	45	Adv. Mater. 2017, 29, 1607017
CoP/NCNHP	140	53	J. Am. Chem. Soc. 2018, 140, 2610
PANI/CoP HNWs-CFs	57	34.5	J. Am. Chem. Soc. 2018, 140, 5118
IE-MoS ₂ -Ti ₃ C ₂ @240	110	40	J. Mater. Chem. A, 2018, 6, 16882
Ti_2CT_x nanosheets	75	100	Nano Energy 2018 , 47, 512
CoP/NC	116	103	Adv. Funct. Mater. 2019, 29, 1807976
CoP ₃ /CF	125.3	50.5	Small 2019, 15, 1904681
CoP@PC-750	72	49	Small 2019, 15, 1900550
CoP/NPC/TF	91	54	Adv. Energy Mater. 2019, 9, 1803970
CoP/CC	78	61	ACS Catal. 2019, 9, 3744
CoP/CF	65	57	Angew. Chem. Int. Ed. 2019, 58, 4679
Co _{0.31} Mo _{1.69} C/MXene	81	24	Adv. Energy Mater. 2019, 9, 1901333
Ru_{SA} -N-S- $Ti_3C_2T_x$	76	90	Adv. Mater. 2019, 31, 1903841
CoP ₂ /CC	125	73	Sci. Adv. 2020, 6, eaaw8113
CoP NFs	122	54.8	ACS Catal. 2020, 10, 412
CoP/CNT	85	63	Angew. Chem. Int. Ed. 2020, 59, 4154
CoP/CC	79	61	Appl. Catal. B Environ. 2020, 253, 21
Mo ₂ C/Ti ₃ C ₂ T _x @NC	75	59.2	J. Mater. Chem. A 2020, 8, 7109
CoP/Ti ₃ C ₂ MXene	71	57.6	This work

Table S2. Comparison of HER catalytic performance for non-precious metalelectrocatalysts in $0.5 \text{ M H}_2\text{SO}_4$.

Catalysts	η (mV) at	Tafel slope	References
	10 mA cm ⁻²	mV dec ⁻¹	
CoP/CC	106	93	J. Am. Chem. Soc. 2014, 136, 7587
CoP/Ti	149	111	Chem. Mater. 2014, 26, 4326
CoNi ₄ P ₂	430	NA	Energy Environ. Sci. 2014, 7, 329
CoP-MNA/NF	$\sim \! 180^a$	189	Adv. Funct. Mater. 2015, 25, 7337
NiCoP/rGO	124	91	Adv. Funct. Mater. 2016, 26, 6785
CoP NW/Hb	121	106	Nano Research 2017, 10, 1010
CoP@BCN-1	122	59	Adv. Energy Mater. 2017, 7, 1601671
Ni ₂ P@NPCNFs	185.3	230.3	Angew. Chem. Int. Ed. 2018, 57, 1963
Ni _{0.1} Co _{0.9} P/CFP	125	103	Angew. Chem. Int. Ed. 2018, 57, 15445
CoP@NPMG	126	62	Nanoscale 2018, 10, 2603
V-CoP/CC	123	72.6	Chem. Sci. 2018, 9, 1970
CoP/NiCoP/NC	123	78	Adv. Funct. Mater. 2019, 29, 1807976
CoP ₃ /CF	136	121.7	Small 2019, 15, 1904681
CoP/CC	130	94	ACS Catal. 2019, 9, 3744
CoP/CF	97	89	Angew. Chem. Int. Ed. 2019, 58, 4679
Co _{0.31} Mo _{1.69} C/MXene	126 ^b	46	Adv. Energy Mater. 2019, 9, 1901333
Ru_{SA} -N-S-Ti ₃ C ₂ T _x	275°	NA	Adv. Mater. 2019, 31, 1903841
Co ₂ P/NC-900	315	166	ChemSusChem 2020, 13, 351
CoP/CC	136	117	Appl. Catal. B Environ. 2020, 253, 21
B-CoP/CNT	79	80	Angew. Chem. Int. Ed. 2020, 59, 4154
Mo ₂ C/Ti ₃ C ₂ T _x @NC	114 ^b	80.3	J. Mater. Chem. A 2020, 8, 7109
CoP/Ti ₃ C ₂ MXene	124	96.8	This work

Table S3. Comparison of HER catalytic performance for non-precious metalelectrocatalysts in 1.0 M PBS.

^a: 0.5 M PBS; ^b: 0.1 M PBS; ^c: 0.5 M Na₂SO₄.

Table S4. Comparison of OER catalytic performance for non-precious electrocatalysts

Catalysts	$\eta \left(mV\right)$ at	Tafel slope	References
	10 mA cm ⁻²	mV dec ⁻¹	
CoP-MNA/NF	290	65	Adv. Funct. Mater. 2015, 25, 7337
Co-P film	345	47	Angew. Chem. Int. Ed. 2015, 54, 6251
CoP NR/C	320	71	ACS Catal. 2015, 5, 6874
NiCoP/NF	280	87	Nano Lett. 2016, 16, 7718
CoMnP nanoparticles	330	61	J. Am. Chem. Soc. 2016, 138, 4006
CoP/rGO	340	66	Chem. Sci. 2016, 7, 1690
CoP NS/C	277	85.6	Green Chem. 2016, 18, 2287
g-C ₃ N ₄ /Ti ₃ C ₂ MXene	340	NA	Angew. Chem. Int. Ed. 2016, 55, 1138
CoBDC/Ti ₃ C ₂ T _x	410 ^a	48.2	ACS Nano 2017, 11, 5800
NiCoP/Ti	310	52	Adv. Mater. Interfaces 2016, 3, 1500454
NiCoP/C	330	96	Angew. Chem. Int. Ed. 2017, 56, 3897
FeNi-LDH/Ti ₃ C ₂ -MXene	298	43	Nano Energy 2018 , 44, 181
Ni _{0.7} Fe _{0.3} PS ₃ @MXene	282	36.5	Adv. Energy Mater. 2018, 8, 1801127
NiCoS/Ti ₃ C ₂ T _x	365	58.2	ACS Appl. Mater. Interfaces 2018, 10, 22311
CoP/NCNHP	310	70	J. Am. Chem. Soc. 2018, 140, 2610
S:Co ₂ P@CC	290	82	Chem. Mater. 2018, 30, 8861
CoP@NPMG	276	54	Nanoscale 2018, 10, 2603
CoP@PC-750	283	53	Small 2019, 15, 1900550
CoP/CoO	295	73	Nano Energy 2019 , 56, 109
NiFe-LDH/MXene/NF	229	44	Nano Energy 2019 , 63, 103880
CoP/TiO _x	337	72.1	Small 2020, 16, 1905075
Co ₂ P NRs	372.2	111.8	J. Am. Chem. Soc. 2020, 142, 8490
CoP/CC	340	87	Adv. Funct. Mater. 2020, 30, 1909618
CoP NFs	323	49.6	ACS Catal. 2020, 10, 412
CoP/Ti ₃ C ₂ MXene	280	95.4	This work

in 1.0 M KOH.

a: 0.1 M KOH

Potential (V) at Catalysts References 10 mA cm⁻² Co-P film 1.65 Angew. Chem. Int. Ed. 2015, 54, 6251 CoP-MNA 1.62 Adv. Funct. Mater. 2015, 25, 7337 CoP NR ACS Catal. 2015, 5, 6874 1.587 NiCoP/Ti 1.64 Adv. Mater. Interfaces 2016, 3, 1500454 CoP nanosheets 1.54 Green Chem. 2016, 18, 2287 CoP/GO 1.7 Chem. Sci. 2016, 7, 1690 CoP/CC 1.61 ChemSusChem 2016, 9, 472 Adv. Mater. 2017, 29, 1602441 Fe-CoP/Ti 1.60 CoP NA/CC 1.65 ChemElectroChem 2017, 4, 1840 Ni-Co-P HNBs Energy Environ. Sci. 2018, 11, 872 1.62 S:CoP@NF 1.617 Nano Energy 2018, 53, 286 CoP-400 Adv. Energy Mater. 2018, 8, 1802445 1.65 CoP@a-CoO_x plate Adv. Sci. 2018, 5, 1800514 1.66 CoP/NCNHP 1.64 J. Am. Chem. Soc. 2018, 140, 2610 NC-CNT/CoP J. Mater. Chem. A 2018, 6, 9009 1.63 CoP@NPMG Nanoscale 2018, 10, 2603 1.58 $Ni_{0.7}Fe_{0.3}PS_3@MXene \parallel$ Adv. Energy Mater. 2018, 8, 1801127 1.65 Ni_{0.9}Fe_{0.1}PS₃@MXene NiFe-LDH/MXene/NF 1.51 Nano Energy 2019, 63, 103880 Er-CoP/CC 1.58 J. Mater. Chem. A 2019, 7, 5769 Nano Energy 2019, 63, 103821 CoP@NiFe-OH/SPNF 1.53 CoP@PC-750 Small 2020, 16, 1900550 1.60 CoP NFs 1.65 ACS Catal. 2020, 10, 412 O-CoP Adv. Funct. Mater. 2020, 30, 1905252 1.60 CoP/Ti₃C₂ MXene 1.578 This work

Table S5. Summary of recent reported representative of bifunctional non-noble metal

based catalysts for overall water-splitting in 1.0 M KOH.

Reference

1 C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, J. Am. Chem. Soc., 2013,

135, 16977-16987.

2 N. Ismail, M. Madian and A. A. El-Meligi, J. Alloys Compd., 2014, 588, 573-577.