Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Gapped metals as thermoelectric materials revealed by high-throughput screening.

Francesco Ricci, Alexander Dunn, Anubhav Jain, Gian-Marco Rignanese, Geoffroy Hautier

July 20, 2020

1 Full dataset description

The full dataset of all gapped metals found in this screening is divided in four files according to the number of elements in the compounds: data_binaries.xls, data_ternaries.xls, data_quaternaries.xls, data_quinaries.xls. Each file contains 4 sheets with data relative to different temperatures (i.e. 300 K, 600 K, 900 K, 1200 K). The list of the labels used in those file and their meaning is explain in Table 1. Another file is also provided: data_groupped_binaries_ternaries_600K.xls. This file contains similar data at only 600 K for binaries and ternaries gapped metals, but the compounds are groupped by same composition and same space group. We remind that complete transport data for all these materials can be found in Ref. [1], the band structure and other details in the MP website.

2 Automatminer

Models for predicting minimum lattice thermal conductivities in the high temperature limit (κ_{\min}) were trained and validated using Automatminer v2019.3.27b0 [2, 3] to predict the elastic moduli from crystal structure. Separate Automatminer pipelines were fit for shear moduli and bulk moduli indepedently. The datasets consisted of elastic moduli sets for 10,987 compounds computed with DFT-GGA gathered from the Materials Project (MP) on 2019/04/19; the dataset was cleaned to remove unphysical (i.e., negative) elastic moduli and compounds containing noble gas elements. The datasets are also freely accessible through the Matminer [4] data retrieval tools under the names "matbench_log_gyrh" and "matbench_log_kyrh". All elastic moduli gathered from MP use the Voigt-Reuss-Hill (VRH) approximation to determine elastic constants from the full elastic tensor. The Automatminer v2019.3.27b0 "express" preset was used for both pipelines; after instantiation of the preset, the pipeline training and configuration process is entirely automatic. Composition features were automatically generated from matminer featurizers [4] including elemental statistics from MagPie [5, 6], ionic properties, electron affinities, and oxidation states, and structure features were automatically generated from the Sine Coulomb Matrix [7], global symmetry features, Global Instability Index [8], Ewald energy, and crystal density. Feature matrices were imputed and then had the overall dimensionality reduced. Feature reduction was

Label	Description	Units
$\#\mathrm{mp_id}$	Materials Project identifier	
#formula	Chemical formula	
$\#\mathrm{spg}$	Crystal space group	
# eah	Energy above hull	eV
$\#$ zt_T	Optimal zT calculated at temperature T (K)	
$\# opt_pf_T$	Optimal PF calculated at temperature T (K)	$\mu W/K^2 ~m$
$\#sbk@pf_T$	Seebeck coefficient value at optimal PF	$\mu { m V/K}$
$\# cond@pf_T$	Conductivity value at optimal PF	$(\Omega \ {\rm m})^{-1}$
$\# conc@pf_T$	Carrier concentration at optimal PF	${\rm cm}^{-3}$
$\#kappa@pf_T$	Electrical contribution to thermal conductivity at optimal PF	$\rm W/K~m$
$\#L_factor$	Lorenz factor value at optimal PF	$ W \; \Omega/K^2 $
$\#k\min$	Minimal thermal conductivity	W/K m
$\#\mathrm{gap}$	Closest energy gap to the Fermi level	eV
$\#mu_gap$	Distance of the Fermi level from VBM (-) or CBM $(+)$	eV
$\#mu@pf_T$	Distance of the Fermi level from VBM (-) or CBM (+) at optimal PF	eV
$\#n_el$	Number of electrons to add (-) or remove $(+)$ to have a semiconductor	
$\# \mathrm{conc}$	n_el divided by the volume of the primitive cell	
$\# {\rm spin_pol}$	If the band structure is spin polarized	
# U	If the U correction has been used	
#Composition	Element composition	
# type	n- or p-type behavior according to the position of the Fermi level	

Table 1: Labels used in the data files and their description.

done first by removing redundant features having more than 0.95 Pearson correlation with existing features; next, a tree-ensemble method retained features at or higher than the 99th percentile of feature importance. Finally, TPOT (see [9]) searched the Automatminer "express" model space, which contains internal pipelines of several normalization techniques and the following models and corresponding hyperparameter grids: Gradient Boosted trees, Random Forest, Extra Trees, k-Nearest Neighbors, LinearSVR, ElasticNet, and Lasso-Least Angle Regression (implemented in scikit-learn [10]). The TPOT optimizer searched the model space using a genetic algorithm subject to a 24 hour total time constraint. The Automatminer pipelines determine relevant features and the optimal internal machine learning pipelines automatically; the features (derived from matminer featrizer feature names) and model parameters (from scikit-learn) are given in Tables 2, 3, 4, and 5. The models' training/testing split was 80%/20%, with an internal 20% (16% of total) validation set utilized by TPOT for all model selection. After model selection, the best found TPOT models were retrained on the entire training dataset before evaluation. The final models resulted in an mean absolute errors on the elastic moduli test sets of 7.88 GPa for K_{VRH} and 11.49 GPa for G_{VRH} . Propagating the predicted elastic moduli through the κ_{min} calculation, we obtained a MAE of 0.0612 W/m·K; the test set mean average deviation is 0.370 W/m·K. Approximately 93% of predictions for the test set are within 20% of the true κ_{\min} values. Further details on the ML pipelines can be found in the open source Automatminer code repository [2].

Feature name	Description		
MagpieData mean MeltingT	Mean melting temperature among elements in composition		
MagpieData maximum MendeleevNumber	Maximum Mendeleev number among elements in composition		
MagpieData mean NUnfilled	Mean number of unfilled valence orbitals among elements		
MagpieData minimum NValence	Minimum number of valence electrons among elements		
MagpieData avg_dev NUnfilled	Average deviation of unfilled valence orbitals among elements		
MagpieData mean Electronegativity	Mean electronegativity among elements in composition		
MagpieData maximum GSvolume_pa	Maximum DFT-computed volume of elemental solid among elements in composition		
MagpieData mode MeltingT	Mode melting temperature among elements in composition		
MagpieData minimum MendeleevNumber	Minimum Mendeleev number among elements in composition		
MagpieData mode NUnfilled	Mode number of unfilled valence orbitals among elements		
MagpieData maximum MeltingT	Maximum melting temperature among elements in composition		
MagpieData mean CovalentRadius	Mean covalent radius among elements in composition		
MagpieData avg_dev MeltingT	Average deviation of melting temperature among elements in composition		
MagpieData mode MendeleevNumber	Mode Mendeleev number among elements in composition		
MagpieData mean NpValence	Mean number of filled valence p orbitals among elements in composition		
MagpieData mean GSbandgap	Mean DFT bandgap of elemental solid among elements in composition		
MagpieData mean Row	Maximum periodic table row among elements in composition		
MagpieData minimum Electronegativity	Minimum electronegativity among elements in composition		
MagpieData mean GSvolume_pa	Mean DFT-computed volume of elemental solid among elements in composition		
MagpieData minimum Column	Minimum periodic table column among elements in composition		
MagpieData avg_dev MendeleevNumber	Average deviation of Mendeleev number among elements in composition		
packing fraction	Packing fraction derived from crystal structure		
spacegroup_num	Spacegroup number of the crystal structure		
vpa	Voiume per atom of the crystal structure		
sine coulomb matrix eig 0	Eigenvalue 0 derived from the Sine Coulomb Matrix from crystal structure		
density	Density derived from crystal structure		

Table 2: Features retained in the final automatminer pipeline for predicting bulk modulus.

Operation	Hyperparameters	Description	
SelectFwe	$\alpha = 0.032, \texttt{f_classif} \ \text{scoring}$	Select p values according to Family-wise	
		error	
MinMaxScaler	n/a	Scale input linearly according to mini-	
		mum/maximum of training set	
ExtraTreesRegressor MSE split criterion, 0.85 max split fea-		Extra Trees regression model	
	tures, $n_{\text{estimators}} = 200$		

Table 3: Internal TPOT learning pipeline used by Automatminer for predicting bulk modulus.

Feature name	Description		
MagpieData mode Electronegativity	Mode electronegativity among elements in composition		
MagpieData mean CovalentRadius	Mean covalent radius among elements in composition		
MagpieData mean NsUnfilled	Mean number of unfilled s valence orbitals among elements		
MagpieData mean AtomicWeight	Mean atomic weight among elements		
MagpieData avg_dev GSvolume_pa	Average deviation of DFT-computed volume of elemental solids per composition		
MagpieData mean GSvolume_pa	Mean DFT-computed volume of elemental solid among elements in composition		
MagpieData maximum MeltingT	Maximum melting temperature among elements in composition		
MagpieData mean MeltingT	Mean melting temperature among elements in composition		
MagpieData minimum NUnfilled	Minimum number of unfilled valence orbitals among elements in composition		
MagpieData avg_dev MendeleevNumber	Average deviation of Mendeleev numbers among elements in composition		
MagpieData mode MeltingT	Mode melting temperature among elements in composition		
MagpieData mean MendeleevNumber	Mean Mendeleev numbers among elements in composition		
MagpieData mode MendeleevNumber	Mode Mendeleev numbers among elements in composition		
MagpieData maximum MendeleevNumber	Maximum Mendeleev numbers among elements in composition		
MagpieData mean NUnfilled	Mean number of unfilled valence orbitals among elements in composition		
MagpieData mean NpValence	Mean number of filled valence \boldsymbol{p} orbitals among elements in composition		
MagpieData avg_dev MeltingT	Average deviation of melting temperature among elements in composition		
MagpieData mean NsValence	Mean number of filled s orbitals among elements in composition		
MagpieData avg_dev NUnfilled	Average deviation of number of unfilled valence orbitals among elements		
MagpieData mean Electronegativity	Mean electronegativity among elements in composition		
MagpieData minimum MendeleevNumber	Minimum Mendeleev numbers among elements in composition		
MagpieData avg_dev NpUnfilled	Average deviation of number of unfilled \boldsymbol{p} orbitals among elements in composition		
MagpieData avg_dev CovalentRadius	Average deviation of covalent radii among elements in composition		
vpa	Volume per atom of the crystal structure		
sine coulomb matrix eig O	Eigenvalue 0 derived from the Sine Coulomb Matrix from crystal structure		
sine coulomb matrix eig 2	Eigenvalue 2 derived from the Sine Coulomb Matrix from crystal structure		
sine coulomb matrix eig 3	Eigenvalue 3 derived from the Sine Coulomb Matrix from crystal structure		
density	Density derived from crystal structure		
packing fraction	Packing fraction of crystal structure		
spacegroup_num	Spacegroup number derived from crystal structure		

Table 4: Features retained in the final automatminer pipeline for predicting shear modulus.

Operation	Hyperparameters	Description
VarianceThreshold	$\sigma_{\rm thresh} = 0.2$	Remove low variance
		features according to
		$\sigma_{ m thresh}$
ZeroCount [TPOT]	n/a	Add count of zeros and
		nonzeros (among fea-
		tures) per sample
GradientBoostingRegressor	$\alpha = 0.99$, Friedman MSE criterion,	Gradient Boosted Trees
	$r_{\text{learning}} = 0.1$, max depth of 7, 500 es-	regression model
	timators, least squares loss, 40% features	
	per split, 65% subsampling	

Table 5: Internal TPOT learning pipeline used by Automatminer for predicting shear modulus.

Distribution of the Fermi level in the gapped metals with no filter on the optimal ZT applied. Blue bars represent the undoped state, the orange bars the optimized case with the limit of the carrier concentration at 10^{22} cm⁻³, and green bars the optimized case without that limit.

Figure 2:

Distribution of the Fermi level in the gapped metals with a ZT > 0.2 at 600 K. Blue bars represent the undoped state, the orange bars the optimized case with the limit of the carrier concentration at 10^{22} cm⁻³.

4 Optimal ZT vs temperature in gapped metals

Т	Binaries	Ternaries	Quaternaries	Quinaries
300	2	2	1	0
600	17	13	8	9
900	13	13	14	13
1200	68	72	77	78

Table 6: Percentage of compounds that have the maximum optimal ZT at the different temperatures considered in this screening. Only materials with a ZT > 0.2 at 600 K are considered.

5 Plots related to gapped metals taken as reference.

We report here the the crystal structure, the band structure, and the transport properties of La_3Te_4 , Mo_3Sb_7 , $Yb_{14}MnSb_{11}$, and NbCoSb.

Figure 3: Structure (bottom), band structure, and calculated transport properties (top) of La₃Te₄ (mp-879).

Figure 4: Structure (bottom), band structure, and calculated transport properties (top) of Sb₇Mo₃ (mp-1521).

Figure 5: Structure (bottom), band structure, and calculated transport properties (top) of NbCoSb (mp-31460).

Figure 6: Structure (bottom), band structure, and calculated transport properties (top) of Yb₁₄MnSb₁₁.

6 Plots relate to gapped metals with complex band structure.

We report here the crystal structure, the band structure, and the transport properties of $RuBr_3$, an example of gapped metals we excluded from our discussion because of its complex band structure.

Figure 7: Structure (bottom), band structure, and calculated transport properties (top) of RuBr₃ (mp-23294).

7 Plots related to gapped metals in Tables 3 and 4

In the case of materials belonging to the same group that share the same space group, we report here the crystal structure, the band structure, and the transport properties of a single representative of that group.

Figure 8: Structure (bottom), band structure, and calculated transport properties (top) of Na₄Si₂₃ (mp-186).

Figure 9: Structure (bottom), band structure, and calculated transport properties (top) of TaS₂ (mp-1984).

Figure 10: Structure (bottom), band structure, and calculated transport properties (top) of NbSe₂ (mp-2207).

Figure 11: Structure (bottom), band structure, and calculated transport properties (top) of TiS_2 (mp-2156).

Figure 12: Structure (bottom), band structure, and calculated transport properties (top) of In_3Ir (mp-630976).

Figure 13: Structure (bottom), band structure, and calculated transport properties (top) of MnSi (mp-1431).

Figure 14: Structure (bottom), band structure, and calculated transport properties (top) of CoSi (mp-7577).

Figure 15: Structure (bottom), band structure, and calculated transport properties (top) of Yb₅Si₄ (mp-20101).

Figure 16: Structure (bottom), band structure, and calculated transport properties (top) of $Li_{15}Si_4$ (mp-569849).

Figure 17: Structure (bottom), band structure, and calculated transport properties (top) of $Li_{27}Sb_{10}$ (mp-676024).

Figure 18: Structure (bottom), band structure, and calculated transport properties (top) of Yb_2C_3 (mp-9546).

Figure 19: Structure (bottom), band structure, and calculated transport properties (top) of SrN (mp-29973).

Figure 20: Structure (bottom), band structure, and calculated transport properties (top) of Y_3Se_4 (mp-32727).

Figure 21: Structure (bottom), band structure, and calculated transport properties (top) of K_4P_3 (mp-28424).

Figure 22: Structure (bottom), band structure, and calculated transport properties (top) of Cu_7S_4 (mp-624299).

7.2 Ternaries

Figure 23: Structure (bottom), band structure, and calculated transport properties (top) of Mo_6PbS_8 (mp-555066).

Figure 24: Structure (bottom), band structure, and calculated transport properties (top) of $Cu_{12}Sb_4S_{13}$ (mp-647164).

Figure 25: Structure (bottom), band structure, and calculated transport properties (top) of Cu_3SbS_4 (mp-5702).

Figure 26: Structure (bottom), band structure, and calculated transport properties (top) of Cu₂SnTe₃ (mp-13089).

Figure 27: Structure (bottom), band structure, and calculated transport properties (top) of $Li_4(CuO_2)_3$ (mp-25248).

Figure 28: Structure (bottom), band structure, and calculated transport properties (top) of $La_3Ti_4O_{12}$ (mp-754804).

Figure 29: Structure (bottom), band structure, and calculated transport properties (top) of $Co(BiO_3)_2$ (mp-765403).

Figure 30: Structure (bottom), band structure, and calculated transport properties (top) of $Na_3(CuO_2)_2$ (mp-559817).

Figure 31: Structure (bottom), band structure, and calculated transport properties (top) of Pr_2SbO_2 (mp-676273).

Figure 32: Structure (bottom), band structure, and calculated transport properties (top) of $LiNi_3O_4$ (mp-755956).

Figure 33: Structure (bottom), band structure, and calculated transport properties (top) of $Sr_3(SnIr)_4$ (mp-22418).

Figure 34: Structure (bottom), band structure, and calculated transport properties (top) of K_2OsBr_6 (mp-27835).

Figure 35: Structure (bottom), band structure, and calculated transport properties (top) of $Y(Sn_3Ru_2)_2$ (mp-639910).

Figure 36: Structure (bottom), band structure, and calculated transport properties (top) of NaSm₂Se₃ (mp-36966).

Figure 37: Structure (bottom), band structure, and calculated transport properties (top) of $Na(La_2Se_3)_4$ (mp-37312).

Figure 38: Structure (bottom), band structure, and calculated transport properties (top) of $LiAg_2F_4$ (mp-753216).

Figure 39: Structure (bottom), band structure, and calculated transport properties (top) of Nb_3IrS_8 (mp-675367).

Figure 40: Structure (bottom), band structure, and calculated transport properties (top) of $Mg_3Si_8Ir_3$ (mp-569313).

Figure 41: Structure (bottom), band structure, and calculated transport properties (top) of $Li_{12}Mg_3Si_4$ (mp-8331).

Figure 42: Structure (bottom), band structure, and calculated transport properties (top) of Nb_4GaS_8 (mp-4139).

Figure 43: Structure (bottom), band structure, and calculated transport properties (top) of Sr_3CrN_3 (mp-12906).

Figure 44: Structure (bottom), band structure, and calculated transport properties (top) of $Na_3(TiS_2)_{10}$ (mp-675056).

Figure 45: Structure (bottom), band structure, and calculated transport properties (top) of Ca_3CrN_3 (mp-8670).

References

- F. Ricci, W. Chen, U. Aydemir, G. J. Snyder, G.-M. Rignanese, A. Jain, and G. Hautier, "An ab initio electronic transport database for inorganic materials," *Scientific Data*, vol. 4, p. 170085, 2017.
- [2] https://github.com/hackingmaterials/automatminer.
- [3] A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, "Benchmarking materials property prediction methods: The mathematication automatiminer reference algorithm," 2020.
- [4] L. Ward, A. Dunn, A. Faghaninia, N. E. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen, K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain, "Matminer: An open source toolkit for materials data mining," *Computational Materials Science*, vol. 152, pp. 60 – 69, 2018.
- [5] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, "A general-purpose machine learning framework for predicting properties of inorganic materials," *npj Computational Materials*, vol. 2, p. 16028, 2016.
- [6] A. M. Deml, R. O'Hayre, C. Wolverton, and V. Stevanovic, "Cheminform abstract: Predicting density functional theory total energies and enthalpies of formation of metal-nonmetal compounds by linear regression," *ChemInform*, vol. 47, no. 44, 2016.
- [7] F. Faber, A. Lindmaa, O. A. Von Lilienfeld, and R. Armiento, "Crystal structure representations for machine learning models of formation energies," *International Journal of Quantum Chemistry*, vol. 115, no. 16, pp. 1094–1101, 2015.
- [8] A. Salinas-Sanchez, J. Garcia-Muñoz, J. Rodriguez-Carvajal, R. Saez-Puche, and J. Martinez, "Structural characterization of R₂BaCuO₅ (r = y, lu, yb, tm, er, ho, dy, gd, eu and sm) oxides by x-ray and neutron diffraction," *Journal of Solid State Chemistry*, vol. 100, no. 2, pp. 201 – 211, 1992.
- [9] https://epistasislab.github.io/tpot/citing/.
- [10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," *Journal of Machine Learning Research*, vol. 12, pp. 2825–2830, 2011.