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1 Full dataset description

The full dataset of all gapped metals found in this screening is divided in four files according to the

number of elements in the compounds: data_binaries.xls, data_ternaries.xls, data_quaternaries.xls,

data_quinaries.xls. Each file contains 4 sheets with data relative to different temperatures (i.e. 300 K,

600 K, 900 K, 1200 K). The list of the labels used in those file and their meaning is explain in Table 1.

Another file is also provided: data_groupped_binaries_ternaries_600K.xls. This file contains similar

data at only 600 K for binaries and ternaries gapped metals, but the compounds are groupped by same

composition and same space group. We remind that complete transport data for all these materials can

be found in Ref. [1], the band strucuture and other details in the MP website.

2 Automatminer

Models for predicting minimum lattice thermal conductivities in the high temperature limit (κmin) were

trained and validated using Automatminer v2019.3.27b0 [2, 3] to predict the elastic moduli from crystal

structure. Separate Automatminer pipelines were fit for shear moduli and bulk moduli indepedently.

The datasets consisted of elastic moduli sets for 10,987 compounds computed with DFT-GGA gathered

from the Materials Project (MP) on 2019/04/19; the dataset was cleaned to remove unphysical (i.e.,

negative) elastic moduli and compounds containing noble gas elements. The datasets are also freely

accessible through the Matminer [4] data retrieval tools under the names "matbench_log_gvrh" and

"matbench_log_kvrh". All elastic moduli gathered from MP use the Voigt-Reuss-Hill (VRH) approx-

imation to determine elastic constants from the full elastic tensor. The Automatminer v2019.3.27b0

"express" preset was used for both pipelines; after instantiation of the preset, the pipeline training and

configuration process is entirely automatic. Composition features were automatically generated from

matminer featurizers [4] including elemental statistics from MagPie [5, 6], ionic properties, electron affini-

ties, and oxidation states, and structure features were automatically generated from the Sine Coulomb

Matrix [7], global symmetry features, Global Instability Index [8], Ewald energy, and crystal density.

Feature matrices were imputed and then had the overall dimensionality reduced. Feature reduction was
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Label Description Units

#mp_id Materials Project identifier

#formula Chemical formula

#spg Crystal space group

#eah Energy above hull eV

#zt_T Optimal zT calculated at temperature T (K)

#opt_pf_T Optimal PF calculated at temperature T (K) µW/K2 m

#sbk@pf_T Seebeck coefficient value at optimal PF µV/K

#cond@pf_T Conductivity value at optimal PF (Ω m)−1

#conc@pf_T Carrier concentration at optimal PF cm−3

#kappa@pf_T Electrical contribution to thermal conductivity at optimal PF W/K m

#L_factor Lorenz factor value at optimal PF W Ω/K2

#k_min Minimal thermal conductivity W/K m

#gap Closest energy gap to the Fermi level eV

#mu_gap Distance of the Fermi level from VBM (-) or CBM (+) eV

#mu@pf_T Distance of the Fermi level from VBM (-) or CBM (+) at optimal PF eV

#n_el Number of electrons to add (-) or remove (+) to have a semiconductor

#conc n_el divided by the volume of the primitive cell

#spin_pol If the band structure is spin polarized

#U If the U correction has been used

#Composition Element composition

#type n- or p-type behavior according to the position of the Fermi level

Table 1: Labels used in the data files and their description.
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done first by removing redundant features having more than 0.95 Pearson correlation with existing fea-

tures; next, a tree-ensemble method retained features at or higher than the 99th percentile of feature

importance. Finally, TPOT (see [9]) searched the Automatminer "express" model space, which contains

internal pipelines of several normalization techniques and the following models and corresponding hyper-

parameter grids: Gradient Boosted trees, Random Forest, Extra Trees, k-Nearest Neighbors, LinearSVR,

ElasticNet, and Lasso-Least Angle Regression (implemented in scikit-learn [10]). The TPOT optimizer

searched the model space using a genetic algorithm subject to a 24 hour total time constraint. The

Automatminer pipelines determine relevant features and the optimal internal machine learning pipelines

automatically; the features (derived from matminer featrizer feature names) and model parameters (from

scikit-learn) are given in Tables 2, 3, 4, and 5. The models’ training/testing split was 80%/20%, with

an internal 20% (16% of total) validation set utilized by TPOT for all model selection. After model

selection, the best found TPOT models were retrained on the entire training dataset before evaluation.

The final models resulted in an mean absolute errors on the elastic moduli test sets of 7.88 GPa for KVRH

and 11.49 GPa for GVRH. Propagating the predicted elastic moduli through the κmin calculation, we

obtained a MAE of 0.0612 W/m·K; the test set mean average deviation is 0.370 W/m·K. Approximately

93% of predictions for the test set are within 20% of the true κmin values. Further details on the ML

pipelines can be found in the open source Automatminer code repository [2].

Feature name Description

MagpieData mean MeltingT Mean melting temperature among elements in composition

MagpieData maximum MendeleevNumber Maximum Mendeleev number among elements in composition

MagpieData mean NUnfilled Mean number of unfilled valence orbitals among elements

MagpieData minimum NValence Minimum number of valence electrons among elements

MagpieData avg_dev NUnfilled Average deviation of unfilled valence orbitals among elements

MagpieData mean Electronegativity Mean electronegativity among elements in composition

MagpieData maximum GSvolume_pa Maximum DFT-computed volume of elemental solid among elements in composition

MagpieData mode MeltingT Mode melting temperature among elements in composition

MagpieData minimum MendeleevNumber Minimum Mendeleev number among elements in composition

MagpieData mode NUnfilled Mode number of unfilled valence orbitals among elements

MagpieData maximum MeltingT Maximum melting temperature among elements in composition

MagpieData mean CovalentRadius Mean covalent radius among elements in composition

MagpieData avg_dev MeltingT Average deviation of melting temperature among elements in composition

MagpieData mode MendeleevNumber Mode Mendeleev number among elements in composition

MagpieData mean NpValence Mean number of filled valence p orbitals among elements in composition

MagpieData mean GSbandgap Mean DFT bandgap of elemental solid among elements in composition

MagpieData mean Row Maximum periodic table row among elements in composition

MagpieData minimum Electronegativity Minimum electronegativity among elements in composition

MagpieData mean GSvolume_pa Mean DFT-computed volume of elemental solid among elements in composition

MagpieData minimum Column Minimum periodic table column among elements in composition

MagpieData avg_dev MendeleevNumber Average deviation of Mendeleev number among elements in composition

packing fraction Packing fraction derived from crystal structure

spacegroup_num Spacegroup number of the crystal structure

vpa Voiume per atom of the crystal structure

sine coulomb matrix eig 0 Eigenvalue 0 derived from the Sine Coulomb Matrix from crystal structure

density Density derived from crystal structure

Table 2: Features retained in the final automatminer pipeline for predicting bulk modulus.
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Operation Hyperparameters Description

SelectFwe α = 0.032, f_classif scoring Select p values according to Family-wise

error

MinMaxScaler n/a Scale input linearly according to mini-

mum/maximum of training set

ExtraTreesRegressor MSE split criterion, 0.85 max split fea-

tures, nestimators = 200

Extra Trees regression model

Table 3: Internal TPOT learning pipeline used by Automatminer for predicting bulk modulus.

Feature name Description

MagpieData mode Electronegativity Mode electronegativity among elements in composition

MagpieData mean CovalentRadius Mean covalent radius among elements in composition

MagpieData mean NsUnfilled Mean number of unfilled s valence orbitals among elements

MagpieData mean AtomicWeight Mean atomic weight among elements

MagpieData avg_dev GSvolume_pa Average deviation of DFT-computed volume of elemental solids per composition

MagpieData mean GSvolume_pa Mean DFT-computed volume of elemental solid among elements in composition

MagpieData maximum MeltingT Maximum melting temperature among elements in composition

MagpieData mean MeltingT Mean melting temperature among elements in composition

MagpieData minimum NUnfilled Minimum number of unfilled valence orbitals among elements in composition

MagpieData avg_dev MendeleevNumber Average deviation of Mendeleev numbers among elements in composition

MagpieData mode MeltingT Mode melting temperature among elements in composition

MagpieData mean MendeleevNumber Mean Mendeleev numbers among elements in composition

MagpieData mode MendeleevNumber Mode Mendeleev numbers among elements in composition

MagpieData maximum MendeleevNumber Maximum Mendeleev numbers among elements in composition

MagpieData mean NUnfilled Mean number of unfilled valence orbitals among elements in composition

MagpieData mean NpValence Mean number of filled valence p orbitals among elements in composition

MagpieData avg_dev MeltingT Average deviation of melting temperature among elements in composition

MagpieData mean NsValence Mean number of filled s orbitals among elements in composition

MagpieData avg_dev NUnfilled Average deviation of number of unfilled valence orbitals among elements

MagpieData mean Electronegativity Mean electronegativity among elements in composition

MagpieData minimum MendeleevNumber Minimum Mendeleev numbers among elements in composition

MagpieData avg_dev NpUnfilled Average deviation of number of unfilled p orbitals among elements in composition

MagpieData avg_dev CovalentRadius Average deviation of covalent radii among elements in composition

vpa Volume per atom of the crystal structure

sine coulomb matrix eig 0 Eigenvalue 0 derived from the Sine Coulomb Matrix from crystal structure

sine coulomb matrix eig 2 Eigenvalue 2 derived from the Sine Coulomb Matrix from crystal structure

sine coulomb matrix eig 3 Eigenvalue 3 derived from the Sine Coulomb Matrix from crystal structure

density Density derived from crystal structure

packing fraction Packing fraction of crystal structure

spacegroup_num Spacegroup number derived from crystal structure

Table 4: Features retained in the final automatminer pipeline for predicting shear modulus.

Operation Hyperparameters Description

VarianceThreshold σthresh = 0.2 Remove low variance

features according to

σthresh

ZeroCount [TPOT] n/a Add count of zeros and

nonzeros (among fea-

tures) per sample

GradientBoostingRegressor α = 0.99, Friedman MSE criterion,

rlearning = 0.1, max depth of 7, 500 es-

timators, least squares loss, 40% features

per split, 65% subsampling

Gradient Boosted Trees

regression model

Table 5: Internal TPOT learning pipeline used by Automatminer for predicting shear modulus.
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3 Fermi level distributions in gapped metals
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Figure 1:

Distribution of the Fermi level in the gapped metals with no filter on the optimal ZT applied. Blue

bars represent the undoped state, the orange bars the optimized case with the limit of the carrier

concentration at 1022 cm−3, and green bars the optimized case without that limit.
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Figure 2:

Distribution of the Fermi level in the gapped metals with a ZT > 0.2 at 600 K. Blue bars represent the

undoped state, the orange bars the optimized case with the limit of the carrier concentration at 1022

cm−3.

4 Optimal ZT vs temperature in gapped metals

T Binaries Ternaries Quaternaries Quinaries

300 2 2 1 0

600 17 13 8 9

900 13 13 14 13

1200 68 72 77 78

Table 6: Percentage of compounds that have the maximum optimal ZT at the different temperatures

considered in this screening. Only materials with a ZT > 0.2 at 600 K are considered.
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5 Plots related to gapped metals taken as reference.

We report here the the crystal structure, the band structure, and the transport properties of La3Te4,

Mo3Sb7, Yb14MnSb11, and NbCoSb.

Figure 3: Structure (bottom), band structure, and calculated transport properties (top) of La3Te4

(mp-879).

7

https://materialsproject.org/materials/mp-879


Figure 4: Structure (bottom), band structure, and calculated transport properties (top) of Sb7Mo3

(mp-1521).
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https://materialsproject.org/materials/mp-1521


Figure 5: Structure (bottom), band structure, and calculated transport properties (top) of NbCoSb

(mp-31460).
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https://materialsproject.org/materials/mp-31460


Figure 6: Structure (bottom), band structure, and calculated transport properties (top) of Yb14MnSb11.

6 Plots relate to gapped metals with complex band structure.

We report here the crystal structure, the band structure, and the transport properties of RuBr3, an

example of gapped metals we excluded from our discussion because of its complex band structure.
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Figure 7: Structure (bottom), band structure, and calculated transport properties (top) of RuBr3

(mp-23294).
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https://materialsproject.org/materials/mp-23294


7 Plots related to gapped metals in Tables 3 and 4

In the case of materials belonging to the same group that share the same space group, we report here

the crystal structure, the band structure, and the transport properties of a single representative of that

group.

12



7.1 Binaries

Figure 8: Structure (bottom), band structure, and calculated transport properties (top) of Na4Si23

(mp-186).
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https://materialsproject.org/materials/mp-186


Figure 9: Structure (bottom), band structure, and calculated transport properties (top) of TaS2 (mp-

1984).
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https://materialsproject.org/materials/mp-1984
https://materialsproject.org/materials/mp-1984


Figure 10: Structure (bottom), band structure, and calculated transport properties (top) of NbSe2

(mp-2207).
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https://materialsproject.org/materials/mp-2207


Figure 11: Structure (bottom), band structure, and calculated transport properties (top) of TiS2 (mp-

2156).
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https://materialsproject.org/materials/mp-2156
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Figure 12: Structure (bottom), band structure, and calculated transport properties (top) of In3Ir

(mp-630976).
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https://materialsproject.org/materials/mp-630976


Figure 13: Structure (bottom), band structure, and calculated transport properties (top) of MnSi

(mp-1431).
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https://materialsproject.org/materials/mp-1431


Figure 14: Structure (bottom), band structure, and calculated transport properties (top) of CoSi

(mp-7577).
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https://materialsproject.org/materials/mp-7577


Figure 15: Structure (bottom), band structure, and calculated transport properties (top) of Yb5Si4

(mp-20101).
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https://materialsproject.org/materials/mp-20101


Figure 16: Structure (bottom), band structure, and calculated transport properties (top) of Li15Si4

(mp-569849).
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https://materialsproject.org/materials/mp-569849


Figure 17: Structure (bottom), band structure, and calculated transport properties (top) of Li27Sb10

(mp-676024).
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https://materialsproject.org/materials/mp-676024


Figure 18: Structure (bottom), band structure, and calculated transport properties (top) of Yb2C3

(mp-9546).
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https://materialsproject.org/materials/mp-9546


Figure 19: Structure (bottom), band structure, and calculated transport properties (top) of SrN (mp-

29973).
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https://materialsproject.org/materials/mp-29973
https://materialsproject.org/materials/mp-29973


Figure 20: Structure (bottom), band structure, and calculated transport properties (top) of Y3Se4

(mp-32727).
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https://materialsproject.org/materials/mp-32727


Figure 21: Structure (bottom), band structure, and calculated transport properties (top) of K4P3

(mp-28424).
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https://materialsproject.org/materials/mp-28424


Figure 22: Structure (bottom), band structure, and calculated transport properties (top) of Cu7S4

(mp-624299).
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https://materialsproject.org/materials/mp-624299


7.2 Ternaries

Figure 23: Structure (bottom), band structure, and calculated transport properties (top) of Mo6PbS8

(mp-555066).
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https://materialsproject.org/materials/mp-555066


Figure 24: Structure (bottom), band structure, and calculated transport properties (top) of Cu12Sb4S13

(mp-647164).
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https://materialsproject.org/materials/mp-647164


Figure 25: Structure (bottom), band structure, and calculated transport properties (top) of Cu3SbS4

(mp-5702).
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https://materialsproject.org/materials/mp-5702


Figure 26: Structure (bottom), band structure, and calculated transport properties (top) of Cu2SnTe3

(mp-13089).
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https://materialsproject.org/materials/mp-13089


Figure 27: Structure (bottom), band structure, and calculated transport properties (top) of Li4(CuO2)3

(mp-25248).
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https://materialsproject.org/materials/mp-25248


Figure 28: Structure (bottom), band structure, and calculated transport properties (top) of La3Ti4O12

(mp-754804).
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https://materialsproject.org/materials/mp-754804


Figure 29: Structure (bottom), band structure, and calculated transport properties (top) of Co(BiO3)2

(mp-765403).
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https://materialsproject.org/materials/mp-765403


Figure 30: Structure (bottom), band structure, and calculated transport properties (top) of Na3(CuO2)2

(mp-559817).
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https://materialsproject.org/materials/mp-559817


Figure 31: Structure (bottom), band structure, and calculated transport properties (top) of Pr2SbO2

(mp-676273).
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https://materialsproject.org/materials/mp-676273


Figure 32: Structure (bottom), band structure, and calculated transport properties (top) of LiNi3O4

(mp-755956).
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https://materialsproject.org/materials/mp-755956


Figure 33: Structure (bottom), band structure, and calculated transport properties (top) of Sr3(SnIr)4

(mp-22418).
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https://materialsproject.org/materials/mp-22418


Figure 34: Structure (bottom), band structure, and calculated transport properties (top) of K2OsBr6

(mp-27835).
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https://materialsproject.org/materials/mp-27835


Figure 35: Structure (bottom), band structure, and calculated transport properties (top) of Y(Sn3Ru2)2

(mp-639910).
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https://materialsproject.org/materials/mp-639910


Figure 36: Structure (bottom), band structure, and calculated transport properties (top) of NaSm2Se3

(mp-36966).
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https://materialsproject.org/materials/mp-36966


Figure 37: Structure (bottom), band structure, and calculated transport properties (top) of Na(La2Se3)4

(mp-37312).
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https://materialsproject.org/materials/mp-37312


Figure 38: Structure (bottom), band structure, and calculated transport properties (top) of LiAg2F4

(mp-753216).
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https://materialsproject.org/materials/mp-753216


Figure 39: Structure (bottom), band structure, and calculated transport properties (top) of Nb3IrS8

(mp-675367).
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https://materialsproject.org/materials/mp-675367


Figure 40: Structure (bottom), band structure, and calculated transport properties (top) of Mg3Si8Ir3

(mp-569313).
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https://materialsproject.org/materials/mp-569313


Figure 41: Structure (bottom), band structure, and calculated transport properties (top) of Li12Mg3Si4

(mp-8331).
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https://materialsproject.org/materials/mp-8331


Figure 42: Structure (bottom), band structure, and calculated transport properties (top) of Nb4GaS8

(mp-4139).
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https://materialsproject.org/materials/mp-4139


Figure 43: Structure (bottom), band structure, and calculated transport properties (top) of Sr3CrN3

(mp-12906).
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https://materialsproject.org/materials/mp-12906


Figure 44: Structure (bottom), band structure, and calculated transport properties (top) of Na3(TiS2)10

(mp-675056).
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https://materialsproject.org/materials/mp-675056


Figure 45: Structure (bottom), band structure, and calculated transport properties (top) of Ca3CrN3

(mp-8670).
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https://materialsproject.org/materials/mp-8670


References

[1] F. Ricci, W. Chen, U. Aydemir, G. J. Snyder, G.-M. Rignanese, A. Jain, and G. Hautier, “An ab

initio electronic transport database for inorganic materials,” Scientific Data, vol. 4, p. 170085, 2017.

[2] https://github.com/hackingmaterials/automatminer.

[3] A. Dunn, Q. Wang, A. Ganose, D. Dopp, and A. Jain, “Benchmarking materials property prediction

methods: The matbench test set and automatminer reference algorithm,” 2020.

[4] L. Ward, A. Dunn, A. Faghaninia, N. E. Zimmermann, S. Bajaj, Q. Wang, J. Montoya, J. Chen,

K. Bystrom, M. Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. Foster, and A. Jain,

“Matminer: An open source toolkit for materials data mining,” Computational Materials Science,

vol. 152, pp. 60 – 69, 2018.

[5] L. Ward, A. Agrawal, A. Choudhary, and C. Wolverton, “A general-purpose machine learning frame-

work for predicting properties of inorganic materials,” npj Computational Materials, vol. 2, p. 16028,

2016.

[6] A. M. Deml, R. O’Hayre, C. Wolverton, and V. Stevanovic, “Cheminform abstract: Predicting

density functional theory total energies and enthalpies of formation of metal-nonmetal compounds

by linear regression,” ChemInform, vol. 47, no. 44, 2016.

[7] F. Faber, A. Lindmaa, O. A. Von Lilienfeld, and R. Armiento, “Crystal structure representations

for machine learning models of formation energies,” International Journal of Quantum Chemistry,

vol. 115, no. 16, pp. 1094–1101, 2015.

[8] A. Salinas-Sanchez, J. Garcia-Muñoz, J. Rodriguez-Carvajal, R. Saez-Puche, and J. Martinez,

“Structural characterization of R2BaCuO5 (r = y, lu, yb, tm, er, ho, dy, gd, eu and sm) oxides

by x-ray and neutron diffraction,” Journal of Solid State Chemistry, vol. 100, no. 2, pp. 201 – 211,

1992.

[9] https://epistasislab.github.io/tpot/citing/.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research,

vol. 12, pp. 2825–2830, 2011.

51

https://github.com/hackingmaterials/automatminer
https://epistasislab.github.io/tpot/citing/

	Full dataset description
	Automatminer
	Fermi level distributions in gapped metals
	Optimal ZT vs temperature in gapped metals
	Plots related to gapped metals taken as reference.
	Plots relate to gapped metals with complex band structure.
	Plots related to gapped metals in Tables 3 and 4
	Binaries
	Ternaries


