Electronic Supplementary Information for

Computational Screening of Homo and Hetero Transition Metal Dimer Catalysts for Reduction of CO₂ to C₂ Products with High Activity and Low Limiting Potential

Dachang Chen^{a,b}, Zhiwen Chen^b, Zhuole Lu^b, , Ju Tang^a, Xiaoxing Zhang^{a,d*}, Chandra Veer Singh^{b,c*}

- ^a School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China
- ^b Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, M5S 3E4, Canada
- ^c Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, M5S 3G8, Canada
- ^d Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China

*Corresponding	author,	E-mail:	xiaoxing.zhang@outlook.com;
chandraveer.singh	autoronto.ca		

Table of Content

Figures
Figure S1. The adsorption free energy of *H, *OH and *CO against various C ₂ related intermediates.
Figure S2. The pathway for CRR to C ₂ products on Cr-Fe based DAC with the minimum limiting
potential. The calculated free energies are all at U= 0 V versus RHE
Figure S3. The pathway for CRR to C ₂ products on Cr-Cu based DAC with the minimum limiting
potential. The calculated free energies are all at $U=0$ V versus RHE
Figure S4. The pathway for CRR to C ₂ products on Mn-Cu based DAC with the minimum limiting
potential. The calculated free energies are all at $U=0$ V versus RHE
Figure S5. The pathway for CRR to C ₂ products on Fe-Fe based DAC with the minimum limiting
notential. The calculated free energies are all at $U=0$ V versus RHF.
Figure S6. The pathway for CRR to Controducts on Fe-Co based DAC with the minimum limiting
notential. The calculated free energies are all at $U=0$ V versus RHF.
Figure S7. The pathway for CPR to Controducts on Co. Co based DAC with the minimum limiting
notantial. The calculated free energies are all at $U = 0$ V variable PHE S10
Figure S8. The pathway for CPP to Ca products on Co. Ni based DAC with the minimum limiting
Figure S8. The pathway for CKK to C_2 products on Co-NI based DAC with the minimum minimum
potential. The calculated free energies are all at $U=0$ v versus RHE
Figure S9. The pathway for CRR to C_2 products on Co-Cu based DAC with the minimum limiting
potential. The calculated free energies are all at $U=0$ V versus RHE
Figure S10. The pathway for CRR to C_2 products on Ni-Cu based DAC with the minimum limiting
potential. The calculated free energies are all at $U=0$ V versus RHE
Figure S11. The reaction diagrams of CRR on other DACs. The value larger than +0.8 eV means
that the corresponding reaction is difficult to happen
Figure S12. Comparison of energy barriers between the coupling process and protonation process on
DACs, and the relationship with the descriptors
Figure S13. Configurations of protonation process of *CO-CHO or *CO-CO on DACs (LH
mechanism)
Figure S14. Protonation process of *CO-CHO or *CO-CO on DACs (ER mechanism) at applied
potential
Tables
Table S1. Average binding energies (eV) of metal atoms for TM2N6-graphene system and average
cohesive energy in bulk metals for doped two metal atoms
Table S2. The values of thermal correction containing the zero-point energy, the enthalpic correction,
and the entropy correction of the relevant molecules, and the adsorbed species. The temperature is set
as 298 K
Table S3. Values of G(*H), G(*OH) on various of DACs (the yellow background means that the
DAC is excluded for CRR) and magnetic moments
Table S4. Values of G(*COOH), G(*CO) on various of DACs and magnetic moments
Table S5. Values of G(*CHO), G(*COH) on various of DACs and magnetic moments
Table S6. Values of G(*CO-CO), G(*CO-CHO) and G(*CO-COH) on various of DACs and
magnetic moments

Table S7. Values of G(*COCO), G(*COCHO) and G(*COCOH) on various of DACs and magnetic
moments
Table S8. Values of G(*COCH ₂ O), G(*COHCHO), G(*COHCH ₂ O), G(*CHOHCH ₂ O),
G(*CHCH2O), G(*CH2CH2O), G(*CH2CH2OH), G(*CH2CH2OH) and G(*O) on various of DACs and
magnetic moments
Table S9. Values of adsorbed species on Co-Co and magnetic moments S26

Figure S1 The adsorption free energy of *H, *OH and *CO against various C₂ related intermediates; (a) G(*H) versus every C₂ related intermediate; (b) G(*OH) versus every C₂ related intermediate. The linearity is marked with different color for different intermediates; (c) G(*CO) versus every C₂ related intermediate. The linearity is marked with different color for different intermediates

Figure S2 The pathway for CRR to C_2 products on Cr-Fe based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S3 The pathway for CRR to C_2 products on Cr-Cu based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S4 The pathway for CRR to C_2 products on Mn-Cu based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S5 The pathway for CRR to C₂ products on Fe-Fe based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S6 The pathway for CRR to C_2 products on Fe-Co based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S7 The pathway for CRR to C_2 products on Co-Co based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S8 The pathway for CRR to C_2 products on Co-Ni based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S9 The pathway for CRR to C₂ products on Co-Cu based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S10 The pathway for CRR to C₂ products on Ni-Cu based DAC with the minimum limiting potential. The calculated free energies are all at U= 0 V versus RHE. (The red atoms are O, the brown atoms are C, the white atoms are H and the silver atoms in DAC are N)

Figure S11 The reaction diagrams of CRR on other DACs. The value larger than +0.8 eV means that the corresponding reaction is difficult to happen.

Figure S12 Comparison of energy barriers between the coupling process and protonation process on DACs, and the relationship with the descriptors: (a) comparison between the energy barriers of different reactions (LH mechanism); (b) relationship between the energy barriers and G(*OH); (c) relationship between the energy barriers and G(*H); (d) relationship between the energy barriers and G(*CO); (e) energy barriers of protonation process via ER mechanism at applied potential.

Figure S13 Configurations of protonation process of *CO-CHO or *CO-CO on DACs (LH mechanism).

Figure S14 Protonation process of *CO-CHO or *CO-CO on DACs (ER mechanism) at applied potential: (a)*CO-CHO+(H⁺+e⁻)→*CO-CHOH on Cr-Cu; (b)*CO-CHO+(H⁺+e⁻)→*CO-CHOH on Mn-Cu; (c)*CO-CO+(H⁺+e⁻)→*CO-CHO on Co-Co; *CO-CO+(H⁺+e⁻)→*CO-COH on Co-Co; (d)*CO-CHO+(H⁺+e⁻)→*CO-CHOH on Co-Ni; (e)*CO-CHO+(H⁺+e⁻)→*CO-CHOH on Co-Cu; (f)*CO-CHO+(H⁺+e⁻)→*CO-CHOH on Ni-Cu;

			Difference value	
	Average hinding	Average cohesive	between binding	Magnetic moment
TM atoms	energy (eV)	energy (bulk metal)	energy and cohesive	(up)
	chergy (ev)	(eV)	energy (bulk metal)	(μΒ)
			(eV)	
CrCr	-4.66	-4.10	-0.56	7.99
CrMn	-4.59	-3.51	-1.08	8.15
CrFe	-5.14	-4.19	-0.95	6.23
CrCo	-5.67	-4.25	-1.42	1.50
CrNi	-5.45	-4.27	-1.18	2.70
CrCu	-4.72	-3.80	-0.92	3.53
MnMn	-4.58	-2.92	-1.66	7.06
MnFe	-5.25	-3.60	-1.65	5.57
MnCo	-5.62	-3.66	-1.96	2.51
MnNi	-5.58	-3.68	-1.90	3.40
MnCu	-4.58	-3.21	-1.37	3.51
FeFe	-5.93	-4.28	-1.65	4.16
FeCo	-6.26	-4.34	-1.92	3.20
FeNi	-5.96	-4.36	-1.6	2.92
FeCu	-5.06	-3.89	-1.17	2.16
CoCo	-6.32	-4.39	-1.93	2.42
CoNi	-6.15	-4.42	-1.73	1.03
CoCu	-5.31	-3.94	-1.37	0.66
NiNi	-6.06	-4.44	-1.62	0.00
NiCu	-5.11	-3.97	-1.14	0.21
CuCu	-4.22	-3.49	-0.73	0.80

Table S1. Average binding energies (eV) of metal atoms for TM2N6-graphene system andaverage cohesive energy in bulk metals for doped two metal atoms

Species	Zero-point energy (eV)	Enthalpic correction at 298K (eV)	Entropy at 298K (eV)	Correction for liquid phase (eV)	Solvent correction (eV)
CO ₂ (g)	0.31	0.13	0.66	/	/
H ₂ O (l)	0.57	0.1	0.58	-0.09	/
H ₂ (g)	0.27	0.09	0.40	/	/
C ₂ H ₅ OH (l)	2.11	0.20	0.83	-0.07	/
$C_2H_4(g)$	1.36	0.13	0.71	/	/
*H	0.17	0.03	0.02	/	/
*OH	0.37	0.05	0.08	/	-0.20
*COOH	0.6	0.08	0.22	/	-0.10
*CO	0.19	0.05	0.18	/	/
*CHO	0.51	0.08	0.08	/	/
*СОН	0.57	0.06	0.09	/	-0.10
*CO-CO	0.41	0.13	0.29	/	/
*COCO	0.42	0.11	0.24	/	/
*CO-CHO	0.70	0.11	0.30	/	/
*COCHO	0.72	0.10	0.29	/	/
*СО-СОН	0.74	0.13	0.24	/	-0.10
*СОСОН	0.72	0.11	0.28	/	-0.10
*COCH ₂ O	1.05	0.12	0.23	/	/
*COHCHO	1.03	0.13	0.26	/	-0.10
*COHCH ₂ O	1.33	0.13	0.26	/	-0.10
*CHOHCH ₂ O	1.66	0.15	0.26	/	-0.10
*CHCH ₂ O	1.15	0.11	0.22	/	/
*CH ₂ CH ₂ O	1.55	0.12	0.18	/	/
*CH ₂ CH ₂ OH	1.86	0.12	0.26	/	-0.10
*CH ₃ CH ₂ O	1.89	0.12	0.24	/	/
*COHCOH	1.00	0.13	0.31	/	-0.10
*CCO	0.34	0.08	0.18	/	/
*CHCO	0.63	0.09	0.19	/	/
*ССОН	0.63	0.10	0.21	/	-0.10
*CH ₂ CO	0.92	0.10	0.13	/	/
*CHCOH	0.89	0.12	0.20	/	-0.10
*CH ₂ COH	1.24	0.13	0.17	/	-0.10
*CH ₂ CHOH	1.55	0.13	0.22	/	-0.10

 Table S2. The values of thermal correction containing the zero-point energy, the enthalpic correction, and the entropy correction of the relevant molecules, and the adsorbed species. The temperature is set as 298 K.

		Magnetic moment		Magnetic moment
TM atoms	G(*H) (eV)	$(\mu_{ m B})$	G(*OH) (eV)	$(\mu_{ m B})$
CrCr	-0.83	7.10	-1.79 (<-0.9 eV)	6.90
CrMn	-1.05 (<-0.9 eV)	0.34	-1.43 (<-0.9 eV)	6.23
CrFe	-0.23	1.48	-0.81	0.29
CrCo	-0.34	2.84	-0.86	2.72
CrNi	-0.32	3.57	-0.55	1.96
CrCu	0.19	2.89	-0.36	2.96
MnMn	-0.71	5.88	-1.13 (<-0.9 eV)	6.11
MnFe	-0.52	4.63	-0.80	4.48
MnCo	-0.50	3.41	-0.54	3.18
MnNi	0.07	2.97	0.00	2.45
MnCu	0.07	3.31	-0.39	3.50
FeFe	-0.46	3.24	-0.42	3.29
FeCo	-0.12	2.61	-0.12	1.25
FeNi	-0.19	1.68	-0.10	1.13
FeCu	0.09	1.56	-0.18	2.24
CoCo	-0.47	1.05	-0.45	0.00
CoNi	-0.33	0.00	0.13	0.59
CoCu	0.05	0.00	0.33	1.23
NiNi	-0.01	0.00	0.86	0.21
NiCu	0.25	0.50	0.76	0.69
CuCu	0.59	0.00	0.79	1.18

Table S3. Values of G(*H), G(*OH) on various of DACs and magnetic moments, the DACs of which G(*H) or G(*OH) lower than -0.9 eV are excluded

		Magnetic moment		Magnetic moment
1 M atoms	G(*COOH)(eV)	$(\mu_{ m B})$	G(*CO)(eV)	$(\mu_{ m B})$
CrFe	0.44	0.98	-0.65	0.54
CrCo	0.29	0.55	-0.75	2.00
CrNi	0.36	3.48	-0.71	2.64
CrCu	0.19	2.60	-0.06	2.17
MnFe	-0.09	4.57	-1.07	4.75
MnCo	0.21	3.32	-1.01	1.66
MnNi	0.52	2.32	-0.35	2.50
MnCu	0.24	2.36	-0.38	2.08
FeFe	-0.25	3.21	-1.01	1.37
FeCo	0.39	2.73	-0.79	2.32
FeNi	0.32	1.55	-0.81	1.40
FeCu	0.05	0.24	-0.74	0.47
CoCo	0.07	1.52	-1.27	0.00
CoNi	0.26	0.00	-0.87	0.00
CoCu	0.10	0.00	-0.53	0.00
NiNi	1.02	0.00	0.17	0.00
NiCu	0.80	0.50	0.03	1.08
CuCu	1.15	0.66	0.19	0.04

Table S4. Values of G(*COOH), G(*CO) on various of DACs and magnetic moments

TM atoms	C(*CUO)(-V)	Magnetic moment		Magnetic moment		
	G(-CHO) (ev)	$(\mu_{ m B})$	G(*COH)(ev)	$(\mu_{ m B})$		
CrFe	0.74	0.72	0.56	1.54		
CrCo	0.64	0.02	0.31	2.67		
CrNi	0.57	1.59	0.81	2.03		
CrCu	0.52	2.47	1.31	1.13		
MnFe	-0.08	4.64	-0.03	2.56		
MnCo	0.46	3.11	0.31	2.12		
MnNi	0.68	2.11	1.17	1.35		
MnCu	0.37	2.12	1.22	1.43		
FeFe	-0.07	3.20	0.28	2.08		
FeCo	0.59	2.63	0.50	0.80		
FeNi	0.46	1.51	0.68	0.00		
FeCu	0.21	0.49	1.05	0.00		
CoCo	0.18	1.47	0.03	0.00		
CoNi	0.29	0.00	0.99	0.20		
CoCu	0.15	0.00	1.49	0.00		
NiNi	0.50	0.00	2.11	1.63		
NiCu	0.72	0.49	2.14	0.00		
CuCu	1.26	0.00	2.42	0.00		

Table S5. Values of G(*CHO), G(*COH) on various of DACs and magnetic moments

		11	lagifictic momen	115			
TM atoms	G(*CO-CO) (eV)	Magnetic moment ($\mu_{\rm B}$)	G(*CO-CHO) (eV)	Magnetic moment ($\mu_{\rm B}$)	G(*CO-COH) (eV)	Magnetic moment $(\mu_{\rm B})$	
CrFe	-0.94	1.56	-0.30	0.31	0.11	0.11	
CrCo	-1.15	1.81	-0.31	1.50	-0.07	1.08	
CrNi	-0.96	1.49	-0.05	1.53	0.45	1.25	
CrCu	-0.57	1.09	0.48	1.70	0.80	0.25	
MnFe	-1.33	1.82	-1.08	2.67	-0.01	1.27	
MnCo	-1.15	1.14	-0.27	1.45	-0.32	0.00	
MnNi	-0.72	0.00	0.26	1.31	0.83	0.00	
MnCu	-0.85	0.00	0.23	0.88	0.73	0.00	
FeFe	-1.15	0.72	-0.75	1.58	0.32	1.16	
FeCo	-0.89	0.00	-0.41	0.42	0.64	0.48	
FeNi	-1.36	0.00	-0.25	0.00	0.58	0.00	
FeCu	-1.10	0.24	-0.07	0.00	0.93	0.73	
СоСо	-0.92	0.06	-0.93	0.00	-0.06	0.00	
CoNi	-0.72	0.95	0.00	0.00	0.66	0.35	
CoCu	-0.45	0.47	0.14	0.95	1.75	0.23	
NINI	0.70	1 70	0.91	0.64	1.39	0.00	
	0.70	1.70	0.91	0.04	(*COCOH)	0.00	
NiCu	0.26	0.99	1 17	1.05	1.81	1 70	
	0.20	0.99	1.17	1.05	(*COCOH)	1./0	
ՇոՇո	0.14	0.00	1.21	0.00	1.49	0.69	
0.00	0.00	1.21	0.00	(*COCOH)	0.07		

Table S6. Values of G(*CO-CO), G(*CO-CHO) and G(*CO-COH) on various of DACs and magnetic moments

		m	agnetic momer	nts		
	G(*COCO)	Magnetic	G(*COCHO)	Magnetic	G(*COCOH)	Magnetic
1 M atoms	(eV)	moment ($\mu_{\rm B}$)	(eV)	moment ($\mu_{\rm B}$)	(eV)	moment ($\mu_{\rm B}$)
CrFe	-0.12	0.00	-0.11	0.76	0.19	0.00
CrCo	1.02	0.34	0.19	0.35	-0.05	0.98
CrNi	0.94	0.96	0.47	1.14	0.11	1.82
CrCu	0.98	1.83	0.37	2.29	0.66	2.54
MnFe	-0.37	0.73	-0.25	4.44	0.07	0.68
MnCo	-0.11	2.51	0.16	2.82	0.22	1.84
MnNi	0.59	2.10	0.60	2.03	0.97	2.62
MnCu	1.03	2.11	0.21	2.01	0.60	3.12
FeFe	-0.26	2.28	-0.23	2.83	-0.11	1.88
FeCo	0.05	1.75	0.22	2.44	0.27	1.11
EaN	-1.36	0.00	0.26	1.46	0.75	0.00
Feini	(*CO-CO)		0.36			
FeCu	0.03	0.00	0.08	0.37	0.58	1.95
CoCo	-0.29	0.00	0.01	1.26	-0.24	0.00
CoNi	0.12	0.00	-0.10	0.00	0.97	0.00
CoCu	0.50	0.27	0.07	0.00	1.15	0.00
NiNi	1.17	0.44	0.47	0.00	1.39	0.00
NiCu	1.46	0.00	0.98	0.00	1.81	1.70
CuCu	0.66	0.00	1.20	0.39	1.86	0.69

Table S7. Values of G(*COCO), G(*COCHO) and G(*COCOH) on various of DACs and

						(,			U								
	G(*C	Magne	G(*C	Magne	G(*C	Magne	G(*C	Magne	G(*C	Magne	G(*C	Magne	G(*C	Magne	G(*C	Magne		Magne
TM	OCH_2	tic	OHCH	tic	OHCH	tic	HOHC	tic	HCH_2	tic	H_2CH_2	tic	H_2CH_2	tic	H_3CH_2	tic	G(*O)	tic
atoms	O)	mome	O)	mome	2 O)	mome	H ₂ O)	mome	O)	mome	O)	mome	OH)	mome	O)	mome	(eV)	mome
	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)	(eV)	nt ($\mu_{\rm B}$)		nt ($\mu_{\rm B}$)
CrFe	-0.47	0.84	-0.40	0.79	-0.14	1.58	0.17	0.00	0.04	0.00	-0.60	0.00	-1.60	0.54	-2.35	0.32	-2.15	0.69
CrCu	0.72	2.99	0.21	1.77	1.02	1.89	0.00	1.93	0.55	2.45	-0.87	2.01	-1.26	2.65	-2.00	2.69	-1.51	1.68
MnCu	0.62	2.21	0.57	1.67	1.12	1.62	0.59	2.52	0.79	1.49	0.01	2.49	-1.20	2.93	-1.96	3.47	-1.01	2.74
FeFe	-0.44	3.63	-0.22	2.44	-0.14	3.45	-0.31	4.07	-0.42	3.48	-0.96	4.06	-1.41	3.32	-1.90	5.01	-1.51	3.30
FeCo	0.34	3.16	0.50	2.46	0.80	2.45	0.39	3.13	0.52	2.63	-0.27	3.20	-0.86	3.26	-1.67	1.36	-1.02	0.60
CoNi	0.39	0.81	0.69	1.51	1.17	0.64	0.55	0.86	1.01	0.64	0.02	1.00	-0.90	0.00	-1.35	0.83	-0.65	0.94
CoCu	0.45	0.00	0.65	1.05	1.29	0.00	0.61	0.00	1.14	0.00	0.12	0.00	-1.14	0.00	-1.17	1.02	-0.20	2.00
NiCu	0.97	0.00	1.32	2.50	1.92	1.72	1.14	1.08	1.87	1.70	0.85	0.00	-0.51	0.64	-0.78	0.59	0.38	1.09

Table S8. Values of G(*COCH₂O), G(*COHCHO), G(*COHCH₂O), G(*CHOHCH₂O), G(*CH₂CH₂O), G(*CH₂CH₂OH), G(*CH₂CH₂OH), G(*CH₂CH₂OH) and G(*O) on various of DACs and magnetic moments

	Adsorbed species	Magnetic moment
	(eV)	$(\mu_{ m B})$
G(*COHCOH)	0.78	0.00
G(*CCO)	-0.30	0.73
G(*CHCO)	-0.96	0.00
G(*CCOH)	0.46	1.08
G(*CH ₂ CO)	-1.23	0.00
G(*CHCOH)	0.02	0.00
G(*CH ₂ COH)	-0.97	0.00
G(*CH ₂ CHOH)	-1.22	0.00
G(*CH ₂ CH ₂ OH)	-1.03	1.88
G(*O)	-1.31	1.07

Table S9. Values of adsorbed species on Co-Co and magnetic moments