Super-resilient and highly sensitive graphene oxide/cellulose-derived carbon aerogel

Wenzhao Jiang, Chenfei Yao, Wei Chen, Di Li, Linxin Zhong*, and Chuanfu Liu*

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China.
* Corresponding author. E-mail: lxzhong0611@scut.edu.cn (L.Zhong), chfliu@scut.edu.cn (C. Liu)

Table of Contents
S1. Details on experimental methods
S2. Figures for characterization, experimental results
S3. Tabulated results
S4. References
S1. Details on experimental methods

Materials. Hydroxypropyl methyl cellulose (HPMC) was purchased from Macklin, China. Graphite powders were purchased from Nanjing XFNANO MaterialsTech Co., Ltd. 98 wt% H$_2$SO$_4$ and KMnO$_4$ were purchased from Aladdin, China.

Preparation of HPMC/GO suspension. GO was prepared through oxidizing graphite powders via a modified Hummers method1, and then the obtained GO suspension was ultrasonicated (KQ-100B) for 10 min. To obtain HPMC/GO suspension, 1.08 g HPMC was dissolved in 33.92 mL deionized water, and then added 10.00 g GO suspension (1.8 wt%, 0.18 g GO). The above mixture was stirred for 12 h (500-600 rpm) and then ultrasonicated for another 1 h to make sure the remove of air bubbles and the homogeneous mixing of HPMC and GO.

Fabrication of aerogels. HPMC/GO suspension (15 mL) was poured into a plastic box (38 mm × 29 mm × 22 mm), and then the box was placed on a steel box filled with liquid nitrogen. After directional freeze-casting and freeze-drying (in a lyophilizer for 48 h), an aerogel (A-HPMC/GO-6, A and 6 represent aerogel and the mass ratio of HPMC to GO, respectively) was obtained. A-HPMC/GO-x with same solid content but different mass ratios of HPMC to GO (x= 1, 2, 4, 6, 8, 10 and 20, representing 1:1, 2:1, 4:1, 6:1, 8:1, 10:1 and 20:1, respectively) were prepared by the same method. In addition, pure HPMC aerogel (A-HPMC) and pure GO aerogel (A-GO) were fabricated from pure HPMC solution and GO suspension. To investigate the effect of directional freezing-casting on the structure and mechanical performance of carbon aerogel, control sample A-R-HPMC/GO-6 was prepared via a random freeze-drying method by immersing a plastic box containing HPMC/GO suspension in liquid nitrogen and then freeze-drying.

Pre-oxidation of aerogels. The aerogel was heated to 240 °C2, 3 (0.5 °C min$^{-1}$) in air using a muffle furnace and held for 4 h to obtain pre-oxidized aerogels before carbonization.

Fabrication of carbon aerogels. The pre-oxidized aerogel was carbonized in a tube furnace under N$_2$ atmosphere. There are three stages during carbonization. The first stage was carried out from room temperature to 300 °C (5 °C min$^{-1}$). In the second stage, the sample was pyrolyzed from 300 °C to 400 °C at a heating rate of v °C min$^{-1}$ (v = 0.5, 1, 3, respectively) and held at 400 °C for 1 h. In the last stage, aerogel was heated to 750 °C (5 °C min$^{-1}$) and kept at 750 °C for 2 h to obtain a carbon aerogel. Aerogels (A-HPMC/GO-x, A-HPMC, A-GO and A-R-HPMC/GO-6) treated by both pre-oxidation and carbonization were named as C-HPMC/rGO-x, C-HPMC, C-rGO and C-R-HPMC/rGO-6, respectively. For comparison, C-N-HPMC/rGO-6 was prepared by directly carbonizing A-HPMC/GO-6 (without pre-oxidation).

Characterizations. The morphologies of all aerogels were observed on scanning electron microscopy (SEM, Merlin, Zeiss) and transmission electron microscopy (TEM, JEM-2100F). Thermal gravity analysis (TGA) was performed on a Pyris Diamond TG/DSC-200 with a heating rate of 10 °C min$^{-1}$ at the temperature range of 25 to 700 °C in a N$_2$ atmosphere. The surface area of carbon aerogel was determined from N$_2$ (77.4 K) adsorption–desorption isotherms using an ASAP-2046 surface area analyzer. The surface area was calculated using a Brunauer–Emmett–Teller (BET) method in the linear range of P/P$_0$=0.01–0.1. X-ray diffraction (XRD) patterns were recorded on a Bruker D8 diffractometer using Cu Kα radiation as the X-ray source. Infrared (IR) data were recorded on a Fourier transform IR spectrometer (VERTEX 70, Bruker Corp., Germany). Raman spectra were carried out on Raman spectrometer (LabRAM ARAMIS-Horiba Jobin Yvon) operating under 532 nm excitation. Compression, elasticity, and fatigue
resistance were performed on a compressive instrument (Instron 5565). The electrical current was measured on an electrochemical workstation (CHI 660E).

Assembly and testing of sensor. The C-HPMC/rGO-6-based sensor was assembled by placing C-HPMC/rGO-6 into two pieces of PET substrates adhered with Al sheets. The strain and loading pressure were conducted by using Instron 5565. The real-time current was recorded on CHI 660E (applying a voltage of 1 V).
S2. Figures for characterization, experimental results

Figure S1. Transmission electron microscopy (TEM) image of GO.
Figure S2. Scanning electron microscopy (SEM) images of A-HPMC.
Figure S3. Digital photographs of (a) A-HPMC and C-HPMC. (b) Stress-strain curves of A-HPMC.
Figure S4. (a) Digital photograph, (b) SEM image, and (c) stress-strain curves of C-R-HPMC/rGO-6 (fabricated by random freeze-casting).
Figure S5. The schematic diagram of directional freezing.
Figure S6. Thermogravimetric analysis (TGA) curves of the as-prepared aerogels.
Figure S7. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distributions of C-HPMC/rGO-x.
Figure S8. FT-IR spectra of the as-prepared aerogels.
Figure S9. XRD patterns of A-GO and C-rGO.
Figure S10. Stress-strain curves of A-HPMC/GO-6.
Figure S11. Digital photographs of C-HPMC/rGO-6 with different solid contents after 10 cycles: (a) 5 wt%, (b) 7 wt%, and (c) 9 wt%, respectively.
Figure S12. Digital photographs of C-HPMC/rGO-x.
Figure S13. Stress-strain curves of (a) C-HPMC/rGO-1, (b) C-HPMC/rGO-2, (c) C-HPMC/rGO-10.
Figure S14. Mechanical properties of C-HPMC/rGO-x vs density.
S3. Tabulated results

Table S1. Stress retentions (30% strain) of C-HPMC/rGO-6 with different heating rates (300-400 °C).

<table>
<thead>
<tr>
<th>Heating rate (°C min⁻¹)</th>
<th>500ˢ (%)</th>
<th>1000ˢ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>90.54</td>
<td>88.58</td>
</tr>
<tr>
<td>1.0</td>
<td>88.70</td>
<td>86.93</td>
</tr>
<tr>
<td>3.0</td>
<td>83.87</td>
<td>81.14</td>
</tr>
</tbody>
</table>
Table S2. Stress retentions of C-HPMC/rGO-6 with different treatment before carbonization at 30% strain.

<table>
<thead>
<tr>
<th>Process</th>
<th>500<sup>th</sup> (%)</th>
<th>1000<sup>th</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>With pre-Oxidation</td>
<td>94.73</td>
<td>94.10</td>
</tr>
<tr>
<td>Without pre-Oxidation</td>
<td>90.54</td>
<td>88.58</td>
</tr>
</tbody>
</table>
Table S3. Stress retentions of C-HPMC/rGO-x with different mass rates of HPMC to GO at 50% strain.

<table>
<thead>
<tr>
<th>Cycles</th>
<th>100<sup>th</sup></th>
<th>500<sup>th</sup></th>
<th>1000<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>87.58%</td>
<td>82.64%</td>
<td>-</td>
</tr>
<tr>
<td>2:1</td>
<td>87.20%</td>
<td>83.05%</td>
<td>-</td>
</tr>
<tr>
<td>10:1</td>
<td>Collapsed after 10 cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:1</td>
<td>Collapsed after 1 cycles</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
S4. References