Bimetallic Ni-Pt nanoparticles immobilized on mesoporous N-doped carbon as highly efficient catalysts for complete hydrogen evolution from hydrazine borane

Wei Wang^[a], Xiaoling Hong^[a], Qilu Yao^[a], Zhang-Hui Lu*^[a]

^aInstitute of Advanced Materials (IAM), College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, P.R. China

Figure S1. SEM images of (a) SBA-15, (b) MNC-500, (c) MNC-600, (d) MNC-700, (e) MNC-800, and (f) MNC-900.

Figure S2. Nitrogen adsorption-desorption isotherms of (a) MNC-500, MNC-600, MNC-700, MNC-800, MNC-900, (b) $Ni_{60}Pt_{40}/MNC-800$; (c) the corresponding pore size distribution.

Figure S3. XRD patterns of (a) MNC-500, MNC-600, MNC-700, MNC-800, and MNC-900; and (b) $Ni_{60}Pt_{40}/MNC-500$, $Ni_{60}Pt_{40}/MNC-600$, $Ni_{60}Pt_{40}/MNC-700$, $Ni_{60}Pt_{40}/MNC-800$, and $Ni_{60}Pt_{40}/MNC-900$ NCs.

Figure S4. The corresponding distribution size histogram of $Ni_{60}Pt_{40}/MNC$ -800.

Figure S5. Representative TEM images and the corresponding distribution size histograms of (a and b) $Ni_{60}Pt_{40}/MNC$ -600, (c and d) $Ni_{60}Pt_{40}/MNC$ -700, and (e and f) $Ni_{60}Pt_{40}/MNC$ -900.

Figure S6. Low-angle XRD pattern of MNC-800.

Figure S7. Representative TEM image of MNC-free $Ni_{60}Pt_{40}$ NPs.

Figure S8. EDX spectrum of $Ni_{60}Pt_{40}/MNC$ -800 NCs. The Cu signal originates from Cu grid.

Figure S9. Time course plots for hydrogen generation from HB (200 mM, 5 mL) catalyzed by Ni₆₀Pt₄₀/MNC-800 NCs (n_{Pt+Ni}/n HB = 0.1) with different metal loadings at 298 K.

Figure S10. Time course plots for hydrogen generation from HB (200 mM, 5 mL) catalyzed by $Ni_{60}Pt_{40}/MNC$ -800, $Ni_{60}Pt_{40}/CMK$ -3, $Ni_{60}Pt_{40}/XC$ -72, and $Ni_{60}Pt_{40}/C$ NCs (n_{Pt+Ni}/n HB = 0.1) at 298 K.

Figure S11. Time course plots for hydrogen generation from HB (200 mM, 5 mL) catalyzed by Ni₆₀Pt₄₀/MNC-800 NCs (n_{Pt+Ni}/n HB = 0.1) with different molar concentration of NaOH at 298 K.

Figure S12. Time course plots for hydrogen generation from HB (200 mM, 5 mL) catalyzed by $Ni_{60}Pt_{40}/MNC-500$, $Ni_{60}Pt_{40}/MNC-600$, $Ni_{60}Pt_{40}/MNC-700$, $Ni_{60}Pt_{40}/MNC-800$, and $Ni_{60}Pt_{40}/MNC-900$ NCs ($n_{Pt+Ni}/nHB = 0.1$) without NaOH at 298 K.

Figure S13. Schematic representation of H_2 generation from HB over $Ni_{60}Pt_{40}/MNC$ -800 catalysts.

Figure S14. TEM images of the $Ni_{60}Pt_{40}/MNC$ -800 NCs after the reusability test.

Figure S15. Powder XRD patterns of (a) fresh synthesized $Ni_{60}Pt_{40}/MNC$ -800 NCs and (b) the $Ni_{60}Pt_{40}/MNC$ -800 NCs after the durability and reusability test.

sample	S _{BET} (m ² g ⁻¹)	pore volume (cm ³ g ⁻¹)	pore size (nm)
MNC-500	354	0.47	4.44
MNC-600	364	0.51	5.56
MNC-700	385	0.65	5.78
MNC-800	438	0.74	5.82
MNC-900	396	0.71	6.49
Ni ₆₀ Pt ₄₀ /MNC-800	289	0.51	5.78

Table S1. Texture Parameters of MNC-500, MNC-600, MNC-700, MNC-800, MNC-900 and $Ni_{60}Pt_{40}/MNC$ -800.

Sample	N wt%	C wt%	C/N mole ratio
MNC-500	18.46	61.70	3.85
MNC-600	18.07	65.90	4.17
MNC-700	13.62	71.82	6.25
MNC-800	9.75	73.02	9.09
MNC-900	8.67	78.26	10.52

Table S2. Element analysis of MNC-500, MNC-600, MNC-700, MNC-800, andMNC-900.

Catalanta	Ni	Pt	Ni/Pt initial	Ni/Pt final
Catalysis	(wt%)	(wt%)	composition	composition
Ni/MNC-800	9.2	-	-	-
Ni ₈₀ Pt ₂₀ /MNC-800	7.0	6.1	80:20	79:21
Ni ₇₀ Pt ₃₀ /MNC-800	6.2	9.0	70:30	69:31
Ni ₆₀ Pt ₄₀ /MNC-800	5.3	11.8	60:40	60:40
Ni ₅₀ Pt ₅₀ /MNC-800	4.3	14.4	50:50	50:50
Ni ₄₀ Pt ₆₀ /MNC-800	3.4	16.9	40:60	40:60
Ni ₃₀ Pt ₇₀ /MNC-800	2.5	19.4	30:70	30:70
Pt/MNC-800	-	26.2	-	-
Ni ₆₀ Pt ₄₀	31.6	68.4	60:40	61:39
$Ni_{60}Pt_{40}/MNC-800$ after five cycles	5.2	11.7	60:40	60:40

Table S3. The catalysts composition determined by inductively coupled plasma atomic emission spectroscopic (ICP-AES).

Comulo	C/N mole	Mean particle	TOF / h ⁻¹
Sample	ratio	size / nm	(298K)
Ni ₆₀ Pt ₄₀ /MNC-600	4.17	7.6	508
Ni ₆₀ Pt ₄₀ /MNC-700	6.25	7.0	882
Ni ₆₀ Pt ₄₀ /MNC-800	9.09	6.0	1111
Ni ₆₀ Pt ₄₀ /MNC-900	10.52	7.4	857

Table S4. The relationship between the performance of the catalyst and the C/N mole ratio and the mean particle size of the metal particles.

Calculation method for *TOF*:

The total turnover frequency (*TOF*) reported in this work is an apparent *TOF* value based on the number of metal atoms in catalyst, which is calculated from the equation as follow:

$$TOF = \frac{n_{H_2}}{n_{metal} \times t}$$

Where n_{H_2} is the mole number of generated H₂, n_{metal} is the mole number of metal (Ni and Pt) in catalyst and *t* is the completed reaction time in hour.