Supporting information

Plasma-Enhanced Cycling Durability of a Mo₂C Decorated N-doped Carbon Nanofiber Electrocatalyst for Li-O₂ Battery Cathode

Zhihui Sun^{a#}, Bo Li^{b#}, Cheng Feng^c, Xuecheng Cao^a, Xiangjun Zheng^a, Kai Zeng^a, Chao Jin^{a*}, Dongmei Dai^b, Ruizhi Yang^{a*}

^a College of Energy, Soochow Institute for Energy and Materials InnovationS, Soochow University, Suzhou 215006, China

^b School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.

^c School of Physics Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

[#] These authors contributed equally to this work.

* Corresponding authors: jinchao@suda.edu.cn; yangrz@suda.edu.cn

Figure S1. The survey XPS profiles of GDP-Mo₂C@NCF and Mo₂C@NCF

Figure S2. Optimized structure and E_{Oads} of O_2 adsorption to generate passivation layer on (101) surface of both Mo₂C and N-doped Mo₂C.

Figure S3. Cycling satbility of GDP-Mo₂C@NCF (a) and Mo₂C@NCF (b) -based LOBs.

Figure S4. SEM images of GDP-Mo₂C@NCF-based cathode at (a) 10th discharge state, (b) 10th charge state, SEM images of Mo₂C@NCF-based cathode (c) 10th discharge state, (d) 10th charge state.

Table S1. Summary of calculated parameters of energy of forming native passivation layer on different lattic planes of Mo₂C and N-doped Mo₂C.

Lattice plane	E1 (eV)	E2 (eV)	E3 (eV)	E _{Oads} (eV)
Mo ₂ C (001)	-25089.25809	-25966.92036	-868.046429	-9.615841
N-doped Mo ₂ C (001)	-25322.54341	-26198.69060	-868.046429	-8.100761
Mo ₂ C (101)	-33460.99523	-34336.42657	-868.046429	-7.384911
N-doped Mo ₂ C (101)	-33694.38875	-34569.75360	-868.046429	-7.318421

Notes:

E1: energy of lattice plane before O_2 adsorption

E2: energy of lattice plane after O₂ adsorption

E3: energy of O₂ molecule

 $E_{\textit{Oads}}$: energy of forming native passivation layer

Catalyst	Current density (mA g ⁻¹)	Fixed capacity (mAh g ⁻¹)	Voltage gap at 1 st cycle (V)	Cycle times	Discharge capacity (mAh g ⁻¹)	Rf.
Co-N-CNT/CNF	200	500	1.5	130+	11512.4	[1]
Fe /FeC ₃ /NC	0.1 mA cm ⁻¹	800	0.65	30+	7150.0	[2]
MoN/N-C	0.1 mA cm ⁻¹	400	1.3	30+	1400.0	[3]
TiC-C	100	500	1.25	90+	3460.0	[4]
α-MoC _{1-X}	100	1000	1.43	100+	20212.0	[5]
W ₂ C@NC	200	500	1.6	55+	10976.0	[6]
MoS ₂ /AuNP	300	1000	1.7	50+	3576.0	[7]
HMCN	200	600	1.55	161+	3100.0	[8]
GDP-Mo ₂ C@NCF	100	1000	0.61	105+	7468.3	this work

Table S2. Comparison of battery performance of GDP-Mo₂C@NCF with other reported electrodes.

References:

[1] Z. D. Yang, X. Y. Yang, T. Liu, Z. W. Chang, Y. B. Yin, X. B. Zhang, Q. Jiang,
In Situ CVD Derived Co–N–C Composite as Highly Efficient Cathode for Flexible
Li–O₂ Batteries, Small. 14(2018), 1800590.

[2] J. X. Li, M. Z. Zou, L. Z. Chen, Z. G. Huang, L. H. Guan, An efficient bifunctional catalyst of Fe/Fe₃C carbon nanofibers for rechargeable Li–O₂ batteries, J. Mater. Chem. A. 2(2014) 10634-10638.

[3] K. Zhang, L. Zhang, X. Chen, X. He, X. Wang, S. Dong, L. Gu, Z. H. Liu, C. S. Huang, G. Cui, Molybdenum nitride/N-doped carbon nanospheres for lithium-O₂ battery cathode electrocatalyst, ACS appl. mater. inter. 5(2013) 3677-3682.

[4] F. Qiu, P. He, J. Jiang, X. P. Zhang, S. F. Tong, H. S. Zhou, Ordered mesoporous TiC–C composites as cathode materials for Li–O₂ batteries, Chem. commun. 52(2016) 2713-2716.

[5] H. Yu, K. N. Dinh, Y. Sun, H. Fan, Y. Wang, Y. Jing, Q. Yan, Performance-

improved Li- O_2 batteries by tailoring the phases of Mo_xC porous nanorods as an efficient cathode, Nanoscale. 10(2018), 14877-14884.

[6] R. Gao, Y. Zhou, X. Liu, J. Wang, N-Doped Defective Carbon Layer Encapsulated W₂C as a Multifunctional Cathode Catalyst for High Performance Li-O₂ Battery, Electrochimica Acta. 245(2017) 430-437.

[7] P. Zhang, X. Lu, Y. Huang, J. Deng, L. Zhang, F. Ding, O. G. Schmidt, MoS₂ nanosheets decorated with gold nanoparticles for rechargeable Li–O₂ batteries, J. Mater. Chem. A. 3(2015), 14562-14566.

[8] Z. Zhang, J. Bao, C. He, Y. Chen, J. Wei, Z. Zhou, Hierarchical carbon–nitrogen architectures with both mesopores and macrochannels as excellent cathodes for rechargeable Li–O₂ batteries, Adv. Funct. Mater. 24(2014) 6826-6833.