Supporting Information for

Stabilizing the cationic/anionic redox of Li-rich layered cathodes by tuning

upper cut-off voltage for high energy-density lithium-ion batteries

Peiyu Hou, *a,b Feng Li,a,c Haiyan Zhang,d and Haitao Huang *b

^aSchool of Physics and Technology, University of Jinan, Jinan, 250022, China

^bDepartment of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China

^cSchool of Materials Science and Engineering, National Institute for Advanced Materials,

Nankai University, Tianjin, 300350, China

^dSchool of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006,

China

*Corresponding authors. E-mail: <u>sps_houpy@ujn.edu.cn</u> (P. Hou), <u>aphhuang@polyu.edu.hk</u> (H. Huang)

Figure S1 Electrochemical performance of LLOs cycled under the upper cut-off voltage of 4.6 V (vs. Li/Li^+): (a) the initial charge/discharge curve at 0.1C, (b) cyclic test at 0.5C, (c) charge/discharge profile under 0.5C at different cycles, and (d) dQ/dV curves at different cycles.

Figure S2 (a) Capacity and (b) voltage stability of LLOs employing the standard electrolyte and the high-voltage electrolyte in half cells.

Figure S3 SEM images of the cycled LLO electrodes at fully discharged state after 200 cycles under the upper cut-off voltages of (a,b) 4.8 V and (c,d) 4.5 V.

Figure S4 Cross-section of LLOs after 200 cycles under the upper cut-off voltages of (a) 4.8 V and (b) 4.5 V.

Figure S5 EDS elemental mapping of the cross-section of LLOs after 200 cycles under the upper cut-off voltage of 4.8 V.

Figure S6 EDS elemental mapping of the cross-section of LLOs after 200 cycles under the upper cut-off voltage of 4.5 V.

Figure S7 Enlarged O-K edges, integrated from surface to bulk of cycled particle under the upper cut-off voltages of (a) 4.8 V and (b) 4.5 V.

Figure S8 The Mn concentration dissolved in electrolyte under the upper cut-off voltages of 4.8 V and 4.5 V after 100 and 200 cycles.

Figure S9 The pre-lithiation curves of the MCMB anode between 0.01 V and 3.0 V.

Figure S10 Continuous charge/discharge curves of the MCMB|LLOs full cells cycled under the cut-off voltages of (a) 4.7 V and (b) 4.4 V.

Component	Cathode	Al Foil	Anode	Cu Foil	Separator	Electrolyte	Pouch	Total
Weight (g)	2.85	0.29	2.55	0.58	0.18	0.90	0.86	8.21
Mass fraction (%)	34.71	3.53	31.06	7.06	2.19	10.96	10.49	100

Figure S11 The main components of the pouch full cells using LLOs as cathode and MCMB as anode. The areal density of 20 mg cm⁻² is commonly used for the active cathode materials in full cells.^[1-3]

Figure S12 Charge/discharge curves of the MCMB|LLOs full cells at varied rates.

Table S1 A comparison of electrochemical performance of LLO cathodes between this work and recent related reports.

Method	Capacity retention % (cycles)	Ref.
stepped pre-cycling treatment from 4.5, 4.6 to 4.7 V	92.5 (55)	4
pre-cycling treatment from 4.5 to 4.8V	92 (50)	5
4.8 V on two cycles and then 4.6 V on the subsequent cycles	84(100)	6
4.8 V on two cycles and then 4.6 V on the subsequent cycles	60 (290)	7
constant 4.6 V	70 (290)	7
pre-cycling treatment from 4.45, 4.55, 4.6 to 4.7 V	84(100)	8
4.8 V on first cycle and then 4.6 V on the subsequent cycles	83 (200)	9
4.8 V on first cycle and then 4.4 V on the subsequent cycles	86 (200)	9
4.6 V on first cycle and then 4.5 V on the subsequent cycles	95.2 (200)	This work

References

[1] A. W. Golubkov, D. Fuchsa, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, V, Hacker, RSC Adv.

2014, 4, 3633.

[2] P. Hou, J. Yin, F. Li, J. Huang, X. Xu, Chem. Eng. J. 2019, 378, 122057.

[3] J. H. Lee, C. S. Yoon, J.-Y. Hwang, S.-J. Kim, F. Maglia, P. Lamp, S.-T. Myung, Y.-K. Sun, Energy Environ. Sci. 2016,

9, 2152.

[4] A. Ito, D. Li, Y. Ohsawab and Y. Sato, J. Power Sources, 2008, 183, 344-346.

[5] W.W. Yan, H. Wen, Y.Z. Chen, Y.P. Wang and Y.N. Liu, J. Power Sources, 2015, 277, 76-83.

[6] P.K. Nayak, J. Grinblat, E. Levi, B. Markovsky, D. Aurbach, J. Power Sources, 2016, 318, 9-17.

[7] M.-H. Lin, J.-H. Cheng, H.-F. Huang, U-F. Chen, C.-M. Huang, H.-W. Hsieh, J.-M. Lee, J.-M. Chen, W.-N. Su and B.-J.

Hwang, J. Power Sources, 2017, 359, 539-548.

[8] W.W. Yan, Y.N. Liu, S.K. Chong and Y.F. Wu, RSC Adv., 2016, 6, 23677-23685.

[9] J.S. Yang, L.F. Xiao, W. He, J.W. Fam, Z.X. Chen, X.P. Ai, H.X. Yang, Y.L. Cao, ACS Appl. Mater. Interfaces, 2016, 8, 18867-18877.