## **Supporting Information**

## Highly dispersed Fe-Ce Mixed Oxide Catalysts Confined in Mesochannels toward Low-Temperature Oxidation Formaldehyde

Jianwei Fan<sup>a</sup>, Xufei Niu<sup>a</sup>, Wei Teng<sup>a\*</sup>, Peng Zhang<sup>a</sup>, Wei-xian Zhang<sup>a</sup>, Dongyuan Zhao<sup>b</sup>

<sup>a</sup> State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, P. R. China

<sup>b</sup> Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, *i*ChEM, Fudan University, Shanghai 200092, P. R. China



Fig. S1 SEM images of SBA-15 supported  $FeO_x$ -CeO<sub>x</sub> catalysts with different contents and calcination temperatures:  $10\% FeO_x$ -CeO<sub>x</sub>/SBA-15-350 (a),  $30\% FeO_x$ -CeO<sub>x</sub>/SBA-15-350 (b) and  $20\% FeO_x$ -CeO<sub>x</sub>/SBA-15-550 (c).



**Fig. S2** HRTEM image of the 20%FeO<sub>x</sub>-CeO<sub>x</sub>/SBA-15-350 catalyst.



**Fig. S3** EDS spectrum of the 20%FeO<sub>x</sub>-CeO<sub>x</sub>/SBA-15-350 catalyst.



**Fig. S4** HAADF-STEM image of 30% FeO<sub>x</sub>-CeO<sub>x</sub>/SBA-15-350.



**Fig. S5** TEM image of the 20%FeO<sub>x</sub>-CeO<sub>x</sub>/SBA-15-350-one pot catalyst prepared by one-pot method with the addition of Fe and Ce precursors at the same time.



**Fig. S6** XRD patterns and TEM image of the used 20%FeO<sub>x</sub>-CeO<sub>x</sub>/SBA-15-350 catalyst.

| Catalyst                                           | Ce <sup>3+</sup> /  |
|----------------------------------------------------|---------------------|
|                                                    | $(Ce^{3+}+Ce^{4+})$ |
| CeO <sub>2</sub> /SBA-15-350                       | 6.30%               |
| 10% FeO <sub>x</sub> -CeO <sub>x</sub> /SBA-15-350 | 13.91%              |
| 20% FeO <sub>x</sub> -CeO <sub>x</sub> /SBA-15-350 | 18.02%              |
| 30% FeO <sub>x</sub> -CeO <sub>x</sub> /SBA-15-350 | 15.60%              |
| 20% FeO <sub>x</sub> -CeO <sub>x</sub> /SBA-15-550 | 12.12%              |

Table S1 The ratio of  $Ce^{3+}$  and  $Ce4^+$  of the catalysts based on XPS results.

| Catalyst                                | НСНО                  | Conversion | Т    | Ref.      |
|-----------------------------------------|-----------------------|------------|------|-----------|
|                                         | concentration         |            | (°C) |           |
| FeO <sub>x</sub> -CeO <sub>x</sub> /SBA | 9.8 μg/L              | 65%        | 30   | This work |
|                                         |                       | 94.9%      | 60   | This work |
|                                         |                       |            |      |           |
| Au-Pd/CeO <sub>2</sub>                  | 8 ppm                 | 50%        | 30   | [1]       |
|                                         |                       | 86%        | 40   |           |
|                                         |                       |            |      |           |
| Au/FeO <sub>x</sub>                     | $6.25 \text{ mg/m}^3$ | 20%        | 20   | [2]       |
| Λ                                       | U                     | 52%        | 40   |           |
|                                         |                       |            |      |           |
| Au/CeO <sub>2</sub> (3DOM)              | 8 ppm                 | 32%        | 20   | [3]       |
|                                         | ° pp                  | 70%        | 40   | [9]       |
|                                         |                       |            |      |           |
| $OMS_2/SiO_2$                           | 15 nnm                | 52.3       | 25   | [4]       |
| 01010-2/010-2                           | 15 ppm                | 52.5       | 23   | [-]       |
|                                         |                       |            |      |           |
| NH. Dt/TiO.                             | 10 ppm                | 76%        | 30   | [5]       |
| 1112-1 1/1102                           | to ppin               | 20/0       | 50   |           |

**Table S2** Comparison of HCHO catalytic oxidation performance of  $FeO_x$ - $CeO_x/SBA-15$  with other catalysts reported in relevant literature.

| IR band wavenumber (cm <sup>-1</sup> ) |                          |                     |       |                           |                          |                     |       |                     |  |
|----------------------------------------|--------------------------|---------------------|-------|---------------------------|--------------------------|---------------------|-------|---------------------|--|
| -OH                                    | С-Н                      |                     | НСС   | НСОО-                     |                          | DOM                 |       |                     |  |
| υ(OH)                                  | v <sub>as</sub> (CH<br>) | υ <sub>s</sub> (CH) | δ(CH) | v <sub>as</sub> (OCO<br>) | v <sub>s</sub> (OC<br>O) | δ(CH <sub>2</sub> ) | v(CO) | υ(CO <sub>3</sub> ) |  |
| ~3743                                  | ~2889                    | ~2937               | ~2969 | ~1600                     | ~1510                    | ~1469               | ~1128 | ~1390               |  |
| ~3413                                  |                          |                     |       |                           |                          |                     |       | ~1310               |  |

Table S3 IR bands of the adsorption of HCHO on the 20% FeO\_x-CeO\_x/SBA-15-350 catalyst.

## **Supporting References**

- 1 Q. Wang, W. Jia, B. Liu, W. Zhao, C. Li, J. Zhang and G. Xu, *Chem. Asian J.*, 2012, 7, 2258-2267.
- 2 C. Li, Y. Shen, M. Jia, S. Sheng, M. O. Adebajo and H. Zhu, *Catal. Commun.*, 2008, 9, 355-361.
- 3 J. Zhang, Y. Jin, C. Li, Y. Shen, L. Han, Z. Hu, X. Di and Z. Liu, *Appl. Catal.*, *B*, 2009, **91**, 11-20.
- 4 J. Su, C. Cheng, Y. Guo, H. Xu and Q. Ke, J. Hazard. Mater., 2019, 380, 120890.
- 5 B. Liu, C. Hsieh, W. Wang, C. Huang and C. Huang, Chem. Eng. J., 2013, 232, 434-441.