Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

Halogen Regulation of Inorganic Perovskites toward Robust Triboelectric Nanogenerators and

Polarity Series

Xueping Yu,^{a, b, #} Yudi Wang,^{b, #} Jihua Zhang,^a Jialong Duan,^b Xiya Yang,^{b, *} Liming Liu,^{c, *} and

Qunwei Tang b, *

^a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science & Technology of China, Chengdu, Sichuan 610054, PR China;

^b Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou 510632, PR China;

^c Zhongshan Branch of State Key Laboratory of Electronic Thin Films and Integrated Devices,

University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan,

Guangdong, 528402, PR China

E-mail address: xiyayang@jnu.edu.cn; liulmxps@126.com; tangqunwei@jnu.edu.cn

Figure S1. XRD patterns of the prepared inorganic perovskite films.

Figure S2. Top-view SEM images of inorganic perovskite films.

Figure S3. Cross-section SEM images of CsPbCl₃, CsPbBr₃ and CsPbI₂Br perovskite films.

Figure S4. Surface AFM images of the inorganic perovskite films.

Figure S5. 3D height AFM images of the inorganic perovskite films.

Figure S6. Circuit diagram for rectifying the alternating-current (AC) of perovskite TENG to directcurrent (DC) output signals.

Figure S7. Voltage, current and power density outputs of (a) CsPbCl₃, (b) CsPbBr₃, and (c) CsPbI₂Br perovskite TENGs at various external load resistances.

Figure S8. The charging curves of (a) CsPbCl₃, (b) CsPbBr₃, and (c) CsPbI₂Br perovskite TENGs for different capacitances.

Figure S9. The V-Q plots of the largest possible output energy per "press-release" cycle of TENGs based on (a,d) CsPbCl₃ (b,e) CsPbBr₃ (c,f) CsPbI₂Br at external load resistance of (a,b,c) 50 M Ω and (d,e,f) 100 M Ω , as well as the corresponding FOM values.

Figure S10. Continuous stability tests for (a) CsPbBr₃ and (b) CsPbI₂Br TENGs over 2600 s.

Figure S11. The output performances of CsPbCl₃, CsPbBr₃, and CsPbI₂Br perovskite-TENGs both in dark and light conditions

Figure S12. Triboelectric current signals of TENGs with (a)red PVDF-black PTFE, (b) red PDMSblack PVDF, (c) red PE-black PDMS, (d) red PE-black PC, (e) red PI-black PC, (f) red PET-black PI, where red and black refer to the red probe and black probe of the electrostatic meter respectively.

Pressure (N) Voltage (V)
4	254
10	257
15	259
22	260
27	262

 Table S1. The impact of force magnitude on the power output.