Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting information

Regulation of intrinsic physicochemical properties of metal oxide nanomaterials for energy conversion and environmental detection applications

Li Chen,^{a, b} Zhonggang Liu,^{a, b} Zheng Guo^{*a, b} and Xing-Jiu Huang^{*a, b, c, d}

a. Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China. E-mail: zhguo@ahu.edu.cn

b. Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China

c. Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, 230031, PR China. E-mail: xingjiuhuang@iim.ac.cn

d. Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.

	-		-			
Metal oxide	Size(nm)	BET SA	Potential (mV) at Tafel		Electrolyte	Def
nanomaterials	Size(iiii)	(m^2 / g)	10 mA/cm ²	slope (mV dec^{-1})	Electrolyte	кеj.
	5.9	111.2	534			
Co_3O_4	21.1	27.93	569	-47±7	1M KOH	S 1
	46.9	7.80	588			
$Co_3O_{4-\delta}$ quantum dots	2	-	270	38.8	1M KOH	S2
NiO	3.3	210	300 (7.5 mA/cm ²)	40	0.5M KOH	S3

Table S1 Detailed comparison of OER activity for metal oxide nanomaterials with different size

 Table S2 The intrinsic physicochemical properties of metal oxide nanomaterials and their corresponding performance for electrocatalytic water splitting

Electrocatalysts	Size [nm]	Reactions	Electrolyte	overpotential η [mV] at 10 mA cm ⁻²	Tafel slope [mV dec ⁻¹]	Ref.
Co ₃ O ₄	5.9 21.1 46.9	OER	1.0 M KOH	534 569 588	-47±7	S 1
$Co_3O_{4-\delta}$ quantum dots	2	OER	1.0 M KOH	270	38.8	S2
NiO	3.3	OER	0.1 M KOH	300 (7.5 mA/cm ²)	40.0	S3
Electrocatalysts	Shape	Reactions	Electrolyte	overpotential η [mV] at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
MoO ₂	nanosheets	HER OER	1.0 M KOH	27 200	41.0 54.0	S4
NiCo ₂ O ₄	microcuboids	erocuboids HER 1.0 M NaOH 50 OER 230		50 230	49.7 53.0	S 5
NiFe-Oxide	nanocubes	HER OER	1.0 M KOH	271 197	48.0 58.0	S6
Co ₃ O ₄	hollow microspheres	OER	0.1 M KOH	~400	-	S7
Co ₃ O ₄	nanoparticle	OER	1.0 M KOH	497	-	S8
Co ₃ O ₄	nanoparticle	OER	1.0 M KOH	314(0.5 mA/cm ²)	-	S9
Co ₃ O ₄	microtube	OER	1.0 M KOH	290	84	S10
Co ₃ O ₄	nano-islands	OER	1.0 M KOH	376	59	S11
Co ₃ O ₄	nanorods	OER	1.0 M KOH	275	-	S12
Co ₃ O ₄	nanowire	OER	0.1 M KOH	290	70	S13
Electrocatalysts	Defect type	Reactions	Electrolyte	overpotential η [mV] at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Ref.
MoO _{3-x}	OVs	HER	0.1 M KOH	170	56	S14
NiO	OVs	HER	1 M KOH	110	100	S15
NiCo ₂ O ₄	OVs	OER	0.1 M KOH	320	30	S16

Co ₃ O ₄	OVs	OER	0.1 M KOH	220	68	S17
Fe _x Co _y -oxide	OVs	OER	0.1 M KOH	350	36.8	S18
$Ca_2Mn_2O_5$	OVs	OER	0.1 M KOH	100	149	S19
Electrocatalysts	Defect type	Reactions	Electrolyte	overpotential η [mV] at	Tafel slope	Ref.
	· · · · · J r ·			10 mA cm ⁻²	(mV dec ⁻¹)	
Co _{3-x} O ₄	MVs	OER	1.0 M KOH	10 mA cm⁻² 268	(mV dec ⁻¹) 38.2	S20
Co _{3-x} O ₄ δ-FeOOH	MVs MVs	OER HER OER	1.0 M KOH	10 mA cm⁻² 268 108 265	(mV dec ⁻¹) 38.2 68 53	S20 S21

 Table S3 The ntrinsic physicochemical properties of metal oxide nanomaterials and their corresponding performance for photocatalytic water splitting

Catalyst	Size [nm]	Reactor/Parameter	Product (H ₂)	Ref.		
	50		0.007 μmol g-1 h-1			
6 0	100	200 WHz Values $\lambda > 420 \text{ sm}$	0.009 µmol g-1 h-1	522		
Cu_2O	300	200 w Hg-Xe lamp, $\lambda > 420$ hm	0.012 µmol g-1 h-1	822		
	500		0.013 µmol g-1 h-1			
Catalyst	Shape	Reactor/Parameter	Product (H ₂)	Ref.		
Conventional			$1.2 \text{ upped} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$			
Cu ₂ O	nanoauhos	200 W Hg Va light source	~1.2 µmor g- m	522		
Hierarchical	nanocubes	200 w ng-xe light source	15	525		
Cu ₂ O			15 μmol g-' n '			
	cubes		24.7 µmol h ⁻¹			
Cu ₂ O	concave cubes	300 W Hg lamp, $\lambda > 420$ nm	70.5 μmol h ⁻¹	S24		
	octapods		145.1µmol h ⁻¹			
	nanotube		4.6 mmol h ⁻¹ g ⁻¹			
TiO ₂	nanorods	250 W Xe lamp, 1.15×105 lx	2.9 mmol h ⁻¹ g ⁻¹	S25		
	nanosquares		2.1mmol h ⁻¹ g ⁻¹			
Catalyst	Defect type	Reactor/Parameter	Product (H ₂)	Ref.		
SrTiO ₃	OVs	300 W Xe lamp	2.2 mmol h ⁻¹ g ⁻¹	S26		
In ₂ O ₃	OVs	300 W Xe lamp, $\lambda > 420$ nm	-	S27		
Catalyst	Defect type	Reactor/Parameter	Product (H ₂)	Ref.		
TiO ₂	MVs	300 W Xe lamp, $\lambda > 420$ nm	29.86 mmol h ⁻¹ g ⁻¹	S28		
Catalyst	Crystal facets	Reactor/Parameter	Product (H ₂)	Ref.		
TiO ₂ Nanobelts	$\{001\}$ and $\{101\}$	300 W Xe lamp, $400 < \lambda < 800$ nm	670 µmol h ⁻¹ g ⁻¹	S29		
Solid TiO ₂			$\sim 80 \ \mu mol \ h^{-1} \ g^{-1}$			
mesoporous	{111}	300 W Xe lamp	~3.2 μ mol h ⁻¹ g ⁻¹	S30		
TiO ₂			5.2 µillor li g			
SrTiO3	{023} and {001}	300 W Xe lamp	71.1 μmol h ⁻¹	S 31		
511105	(020) unu (001)		30.0 µmol /h ⁻¹ (O ₂)	501		
	{100}		0.88 μmol h ⁻¹			
Cu2O	{111}	$300 \text{ W Hg lamp } \lambda > 420 \text{ nm}$	1.23 μmol h ⁻¹	\$32		
0u20	{544}	500 11 115 mmp, N × 420 mm	1.55 μmol h ⁻¹			
	{104}		1.88 µmol h ⁻¹			

WO ₃	{002}	300W Xe lamp, $\lambda > 420$ nm	3 µmol h ⁻¹ cm ⁻²	S33
	(012) and (104)		309.4 µmol h ⁻¹ g ⁻¹	
α-Fe ₂ O ₃	$\{012\}$ and $\{104\}$	300W Xe lamp, $\lambda > 420$ nm	(O ₂)	S34
	$\{101\}$ and $\{111\}$		3.68 µmol h ⁻¹ g ⁻¹ (O ₂)	
BiVO ₄	{040}	300 W Xe lamp, $\lambda \ge 420 \text{ nm}$	310 mmol h ⁻¹	S35

Table	S4	The	ntrinsic	physicochemical	properties	of	metal	oxide	nanomaterials	and	their	corresponding
perform	nanc	e for	photocat	alytic reduction of	CO_2							

Photocatalyst	Size [nm]	Major Products	Yields	Ref.
	4.5		0.15 μmol h ⁻¹ g ⁻¹	
	6		0.29 μmol h ⁻¹ g ⁻¹	
TiO ₂	8	CH_4	0.31 µmol h ⁻¹ g ⁻¹	S36
	14		0.37 µmol h ⁻¹ g ⁻¹	
	29		0.27 μmol h ⁻¹ g ⁻¹	
Photocatalyst	Shape	Major Products	Yields	Ref.
W ₁₈ O ₄₉	nanowires	CH ₄	2.2 mmolL ⁻¹ g ⁻¹ h ⁻¹	S37
Bi ₂ WO ₆	nanoplates	CH ₄	1.1 μmol h ⁻¹ g ⁻¹	S38
WO ₃	nanosheets	CH ₄	$\sim 1.2 \ \mu mol \ h^{-1} \ g^{-1}$	S39
ZnO-Cu ₂ O	sphere	CH ₄	1080 µmol h ⁻¹ g ⁻¹	S40
Photocatalyst	Crystal facets	Major Products	Yields	Ref.
TiO ₂	$\{001\}$ and $\{101\}$	CH ₄	1.35 µmol h ⁻¹ g ⁻¹	S41
Call	$\{112\}$ and $\{111\}$	60	1672 μmol h ⁻¹ g ⁻¹	542
0304	{111}	0	1238 µmol h-1 g-1	542
CeO ₂	$\{100\}$ and $\{111\}$	CH ₄	0.86 µmol h ⁻¹ g ⁻¹	S43
	(001)	СО	0.259 μmol h ⁻¹	
D:OI	{001}	CH ₄	0.089 μmol h ⁻¹	S 4 4
DIOI	(100)	CO 0.076 μmol h ⁻¹		544
	{100}	CH ₄	0.075 μmol h ⁻¹	
BiOIO ₃	$\{010\}$ and $\{100\}$	СО	5.42µmol h ⁻¹ g ⁻¹	S45

References:

- S1. J. Esswein, M. J. McMurdo, P. N. Ross, A. T. Bell and T. D. Tilley, *J. Phys. Chem. C*, 2009, **113**, 15068-15072.
- S2. G. X. Zhang, J. Yang, H. Wang, H. B. Chen, J. L. Yang and F. Pan, ACS Appl. Mater. Interfaces, 2017, 9, 16159-16167.
- S3. Fominykh, J. M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L. Peter, J. Rathousky, E. W. Scheidt, T. Bein and D. Fattakhova-Rohlfing, *Adv. Funct. Mater.*, 2014, 24, 3123-3129.
- S4. Y. S. Jin, H. T. Wang, J. J. Li, X. Yue, Y. J. Han, P. K. Shen and Y. Cui, Adv. Mater., 2016, 28, 3785-3790.
- S5. X. H. Gao, H. X. Zhang, Q. G. Li, X. G. Yu, Z. L. Hong, X. W. Zhang, C. D. Liang and Z. Lin, Angew. Chem. Int. Edit., 2016, 55, 6290-6294.
- S6. A. Kumar and S. Bhattacharyya, ACS Appl. Mater. Interfaces, 2017, 9, 41906-41915.
- S7. J. Zhao, Y. C. Zou, X. X. Zou, T. Y. Bai, Y. P. Liu, R. Q. Gao, D. J. Wang and G. D. Li, *Nanoscale*, 2014, 6, 7255-7262.
- S8. N. H. Chou, P. N. Ross, A. T. Bell and T. D. Tilley, ChemSusChem, 2011, 4, 1566-1569.

- S9. J. D. Blakemore, H. B. Gray, J. R. Winkler and A. M. Müller, ACS Catal., 2013, 3, 2497-2500.
- S10. Y. P. Zhu, T. Y. Ma, M. Jaroniec and S. Z. Qiao, Angew. Chem. Int. Edit., 2017, 56, 1324-1328.
- S11. G. Y. Liu, S. K. Karuturi, A. N. Simonov, M. Fekete, H. J. Chen, N. Nasiri, N. H. Le, P. R. Narangari, M. Lysevych, T. R. Gengenbach, A. Lowe, H. H. Tan, C. Jagadish, L. Spiccia and A. Tricoli, *Adv. Energy Mater.*, 2016, 1600697.
- S12. G. H. Cheng, T. Y. Kou, J. Zhang, C. H. Si, H. Gao and Z. H. Zhang, Nano Energy, 2017, 38, 155-166.
- S13. Y. Ma, S. Dai, M. Jaroniec and S. Z. Qiao, J. Am. Chem. Soc., 2014, 136, 13925-13931.
- S14. Zhu, F. Shi, X. F. Zhu and W. S. Yang, Nano Energy, 2020, 73, 104761.
- S15. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. K. He, Y. S. Zhang, R. Ramprasad and S. L. Suib, *Adv. Energy Mater.*, 2016, 1600528.
- S16. X. D. Zhang and Y. Xie, Chem. Soc. Rev., 2013, 42, 8187-8199.
- S17. J. Bao, X. D. Zhang, B. Fan, J. J. Zhang, M. Zhou, W. L. Yang, X. Hu, H. Wang, B. C. Pan and Y. Xie, *Angew. Chem. Int. Edit.*, 2015, 54, 7399-7404.
- S18. L. Z. Zhuang, L. Ge, Y. S. Yang, M. R. Li, Y. Jia, X. D. Yao and Z. H. Zhu, Adv. Mater., 2017, 29, 1606793.
- S19. J. Kim, X. Yin, K. C. Tsao, S. H. Fang and H. Yang, J. Am. Chem. Soc., 2014, 136, 14646-14649.
- S20. R. R. Zhang, Y. C. Zhang, L. Pan, G. Q. Shen, N. Mahmood, Y. H. Ma, Y. Shi, W. Y. Jia, L. Wang, X. W. Zhang, W. Xu and J. J. Zou, ACS Catal., 2018, 8, 3803-3811.
- S21. B. Liu, Y. Wang, H. Q. Peng, R. Yang, Z. Jiang, X. T. Zhou, C. S. Lee, H. J. Zhao and W. J. Zhang, Adv. Mater., 2018, 30, 1803144.
- S22. S. Karthikeyan, S. Kumar, L. J. Durndell, M. A. Isaacs, C. M. A. Parlett, B. Coulson, R. E. Douthwaite, Z. Jiang, K. Wilson and A. F. Lee, *ChemCatChem*, 2018, 10, 3554-3563.
- S23. S. Kumar, C. M. A. Parlett, M. A. Isaacs, D. V. Jowett, R. E. Douthwaite, M. C.R. Cockett, A. F. Lee, *Appl. Catal. B-Environ.*, 2016, 189, 226-232.
- S24. Y. H. Zhang, B. B. Jiu, F. L. Gong, J. L. Chen and H. L. Zhang, J. Alloy. Compd., 2017, 729, 563-570.
- S25. D. P. Kumar, V. D. Kumari, M. Karthik, M. Sathish and M. V. Shankar, Sol. Energy Mat. Sol. C., 2017, 163, 113-119.
- S26. H. Q. Tan, Z. Zhao, W. B. Zhu, E. N. Coker, B. S. Li, M. Zheng, W. X. Yu, H. Y. Fan and Z. C. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 19184-19190.
- S27. F. C. Lei, Y. F. Sun, K. T. Liu, S. Gao, L. Liang, B. C. Pan and Y. Xie, J. Am. Chem. Soc., 2014, 136, 6826-6829.
- S28. S. B. Wang, L. Pan, J. J. Song, W. B. Mi, J. J. Zou, L. Wang and X. W. Zhang, J. Am. Chem. Soc., 2015, 137, 2975-2983.
- S29. S. C. Sun, P. Gao, Y. R. Yang, P. P. Yang, Y. J. Chen and Y. B. Wang, ACS Appl. Mater. Interfaces, 2016, 8, 18126-18131.
- S30. T. T. Wu, X. D. Kang, M. W. Kadi, I. Ismail, G. Liu and H. M. Cheng, *Chinese J. Catal.*, 2015, **36**, 2103-2108.
- S31. B. Wang, S. H. Shen and L. J. Guo, Appl. Catal. B-Environ., 2015, 166-167, 320-326.
- S32. L. Z. Zhang, J. W. Shi, M. C. Liu, D. W. Jing and L. J. Guo, Chem. Commun., 2014, 50, 192-194.
- S33. J. J. Zhang, P. Zhang, T. Wang and J. L. Gong, Nano Energy, 2015, 11, 189-195.
- S34. Y. L. Wang, Y. H. Li, X. L. Wang, Y. Hou, A. P. Chen and H. G. Yang, *Appl. Catal. B-Environ.*, 2017, 206, 216-220.
- S35. D. G. Wang, H. F. Jiang, X. Zong, Q. Xu, Y. Ma, G. L. Li and C. Li, Chem. Eur. J., 2011, 17, 1275-1282.
- S36. K. Kočí, L. Obalová, L. Matějová, D. Plachá, Z. Lacný, J. Jirkovský and O. Šolcová, *Appl. Catal. B-Environ.*, 2009, 89, 494-502.

- S37. G. C. Xi, S. X. Ouyang, P. Li, J. H. Ye, Q. Ma, N. Su, H. Bai and C. Wang, *Angew. Chem. Int. Edit.*, 2012, 51, 2395-2399.
- S38. Y. Zhou, Z. P. Tian, Z. Y. Zhao, Q. Liu, J. H. Kou, X. Y. Chen, J. Gao, S. C. Yan and Z. Q. Zou, ACS Appl. Mater. Interfaces, 2011, 3, 3594-3601.
- S39. X. Y. Chen, Y. Zhou, Q. Liu, Z. D. Li, J. G. Liu and Z. G. Zou, ACS Appl. Mater. Interfaces, 2012, 4, 3372-3377.
- S40. K. L. Bae, J. Kim, C. K. Lim, K. M. Nam and H. Song, Nat. Commun., 2017, 8, 1156.
- S41. J. G. Yu, J. X. Low, W. Xiao, P. Zhou and M. Jaroniec, J. Am. Chem. Soc., 2014, 136, 8839-8842.
- S42. C. Gao, Q. Q. Meng, K. Zhao, H. J. Yin, D. W. Wang, J. Guo, S. L. Zhao, L. Chang, M. He, Q. X. Li, H. J. Zhao, X. J. Huang, Y. Gao and Z. Y. Tang, *Adv. Mater.*, 2016, 28, 6485-6490.
- S43. P. Li, Y. Zhou, Z. Y. Zhao, Q. F. Xu, X. Y. Wang, M. Xiao and Z. G. Zou, J. Am. Chem. Soc., 2015, 137, 9547-9550.
- S44. L. Q. Ye, X. L. Jin, X. X. Ji, C. Liu, Y. R. Su, H. Q. Xie and C. Liu, Chem. Eng. J., 2016, 291, 39-46.
- S45. F. Chen, H. W. Huang, L. Q. Ye, T. R. Zhang, Y. H. Zhang, X. P. Han and T. Y. Ma, Adv. Funct. Mater., 2018, 28, 1804284.