Implanting FeCo/C Nanocages with Tunable Electromagnetic Parameters in

Anisotropic Wood Carbon Aerogels for Efficient Microwave Absorption

Ye Xiong, Lulu Xu, Caixia Yang, Qingfeng Sun,*and Xijin Xu*

School of Engineering, Zhejiang A & F University, Hangzhou, Zhejiang Province,

311300, PR China

*Corresponding author: qfsun@zafu.edu.cn and xijinxu@yahoo.cn.

Figure S1. SEM images of the natural wood: (a) the cross-sections and (b) the

longitudinal sections.

Figure S2. SEM images of the delignified wood aerogel: (a) the cross-sections and (b)

the longitudinal sections.

Figure S3. SEM images of the $Fe_3O_4/ZIF-67@WA$: (a) the cross-sections and (b) the longitudinal sections.

Figure S4. SEM images of the FeCo/C@WC: (a-b) the cross-sections and (c-d) the longitudinal sections.

Figure S5. XRD curves of WA and Fe₃O₄/ZIF-67@WA.

Figure S6. XPS curves of FeCo/C@WC: (a) full spectrum, (b) Co 2p, and (d) Fe 2p.

Figure S7. Nitrogen adsorption-desorption curves of (a) FeCo/C@WC-1 and (b) FeCo/C@WC-3.

Figure S8. TEM images of (a-b) FeCo/C@WC-1 and (c-d) FeCo/C@WC-3.

Figure S9. Frequency dependence of composites permittivity and permeability: (a) Fe/C@WC and (b) Co/C@WC.

Figure S10. Field-dependent magnetization curve of Co/C@WC, FeCo/C@WC-1, FeCo/C@WC-2, and FeCo/C@WC-3 at room temperature.

Figure S11. The attenuation constants for FeCo/C@WC.

Figure S12. Frequency dependence of the impedance matching ratio (Zr).

Figure S13. (a-c) 3D representations of reflection loss and (d-f) the efficient absorption

bandwidths of WC, Fe/C@WC, and Co/C@WC.

Figure S14. Frequency dependence of reflection losses of FeCo/C@WC-1.

Figure S15. Frequency dependence of reflection losses of FeCo/C@WC-3.

Table S1. The density of the samples.

Sample	Density (mg/cm ³)
WC	70.78
FeCo/C@WC-1	42.52
FeCo/C@WC-2	48.13
FeCo/C@WC-3	52.24

 Table S2. The content of FeCo were obtained by Energy Dispersive Spectrometer

 (EDS).

Atomic percentage	Со	Fe	С	0	Ν
FeCo/C@WC-1	7.09	3.24	76.47	9.85	3.35
FeCo/C@WC-2	6.45	7.18	74.42	9.32	3.63
FeCo/C@WC-3	5.86	12.92	71.93	8.63	4.26

Table S3. Typical carbon-based composites and their MA performance.

Absorbers	RLmax (dB)	Thickness (mm)	Absorption bandwidth (GHz)	SRLt	Ref.
CNTs/Co	-54.5	3.0	2.5	-18.2	[1]
FeCo/CNTs	-46.5	1.7	3.92	-27.4	[2]
CMT@CNT/Co	-52.3	2.0	5.1	-26.1	[3]
FexCyNz/N-CNT	-25.1	4.0	1.2	-6.3	[4]
Ni/SnO ₂ /MWCNT	-39.2	1.5	3.6	-26.1	[5]
ERG/Si ₃ N ₄	-26.7	3.75	4.2	-7.12	[6]
RGO/hBN	-23	1.2	3	-19.2	[7]
Fe ₃ O ₄ -graphene	-30.1	1.48	10.5	-20.3	[8]
RGO/PANI	-36.9	3.5	4.2	-10.5	[9]
RGO/MWCNTs/ZnFe ₂ O ₄	-22.2	1.0	2.3	-22.2	[10]
CF@G@PPy	-45.12	2.5	2.5	-18.0	[11]
Polypyrrole aerogel	-34.6	2.5	6.2	-13.8	[12]
Fe-C nanofibers	-36.0	3.0	0.9	-12.0	[13]
Co/N-C NFs	-25.7	2.0	4.3	-12.9	[14]
Biomass-pyrolized carbon	-68.3	4.28	6.13	-15.9	[15]
FeCo/C@WC	-47.6	1.5	6.3	-31.7	This work

References

- [1] Y. Yin, X. Liu, X. Wei, R. Yu, J. Shui, *ACS applied materials & interfaces* **2016**, 8, 34686.
- [2] B. Yang, Y. Wu, X. Li, R. Yu, *Materials & Design* **2017**, 136, 13.
- [3] Z. Wu, K. Pei, L. Xing, X. Yu, W. You, R. Che, Advanced Functional Materials 2019, 29, 1901448.
- [4] Y. Zhou, J. Miao, Y. Shen, A. Xie, *Applied Surface Science* **2018**, 453, 83.
- [5] L. Lin, H. Xing, R. Shu, L. Wang, X. Ji, D. Tan, Y. Gan, *RSC Advances* 2015, 5, 94539.
- [6] F. Ye, Q. Song, Z. Zhang, W. Li, S. Zhang, X. Yin, Y. Zhou, H. Tao, Y. Liu, L. Cheng, Advanced Functional Materials 2018, 28, 1707205.
- [7] Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang, H. Cheng, X. Li, *Carbon* 2013, 61, 200.
- [8] X. Li, H. Yi, J. Zhang, J. Feng, F. Li, D. Xue, H. Zhang, Y. Peng, N. J. Mellors, *Journal of nanoparticle research* 2013, 15, 1472.
- [9] X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, *Nanoscale* 2014, 6, 8140.
- [10] R. Shu, G. Zhang, J. Zhang, X. Wang, M. Wang, Y. Gan, J. Shi, J. He, *Journal* of Alloys and Compounds **2018**, 736, 1.
- [11] C. Wang, Y. Ding, Y. Yuan, X. He, S. Wu, S. Hu, M. Zou, W. Zhao, L. Yang, A. Cao, *Journal of Materials Chemistry C* 2015, 3, 11893.
- [12] A. Xie, F. Wu, M. Sun, X. Dai, Z. Xu, Y. Qiu, Y. Wang, M. Wang, *Applied Physics Letters* 2015, 106, 222902.
- [13] T. Wang, H. Wang, X. Chi, R. Li, J. Wang, *Carbon* **2014**, 74, 312.
- [14] H. Liu, Y. Li, M. Yuan, G. Sun, H. Li, S. Ma, Q. Liao, Y. Zhang, ACS applied materials & interfaces 2018, 10, 22591.
- [15] J. Xi, E. Zhou, Y. Liu, W. Gao, J. Ying, Z. Chen, C. Gao, *Carbon* 2017, 124, 492.