Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Exploiting Hansen Solubility Parameters to Tune Porosity and Function

in Conjugated Microporous Polymers

Jie Chen^a, Ting Qiu^c, Wei Yan^d, Charl F.J. Faul^{b,*}

^a College of Environment and Resources, Fuzhou University, Fuzhou 350116, P.R. China

^b School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK

^c College of Chemical Engineering, Fuzhou University, Fuzhou 350116, Fujian, P.R. China

^d Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China

*Corresponding Author E-mail: <u>charl.faul@bristol.ac.uk</u> (Prof. Charl F.J. Faul)

Table of Contents

SECTION S1 SUPPLEMENTARY FIGURES	S2
SECTION S2 INTRODUCTION TO HANSEN SOLUBILITY PARAMETERS ¹⁻²	S13
SECTION S3 CALCULATION OF HANSEN SOLUBILITY PARAMETERS OF POLYMERS	S14
SECTION S4 SUPPLEMENTARY TABLES	S15
REFERENCES	S19

Section S1 Supplementary Figures

Figure S1 FTIR spectra of starting materials and the resulting control polymer for **PTAPA** (a) and **PAPA** (b).

Protocol of the C-13 NMR Prediction: (Lib=S)

	Node	Shift	Base + Inc.	Comment (ppm rel. to TMS)
	с	125.2	128.5 3.3	1-bensene 1 -S-1:C*C*C*C*C*C*C*1 1 -W-1:C*C*C*C*C*C*1
	с	124.1	128.5 128.5	general corrections
	_		-11.6 3.9	1 -N-C general corrections
	С	140.9	128.5 -1.5 14.7	1 -S-1:C*C*C*C*C*C*C*1 1 -N-1:C*C*C*C*C*C*1
	с	131.9	-0.8 128.5 14.7	general corrections 1-bensene 1 -N-1:C*C*C*C*C*C*C*1
	с	147.1	-10.5 -0.8 128.5	<pre>1 =N(C)C general corrections 1-bensene</pre>
	~	140 5	-10.5 16.0 13.1	1 -N(C)C general corrections
	C	148.5	-1.5 15.0	1 -S-1:C*C*C*C*C*C*1 1 -N-C
	CH	128.9	128.5 2.5	general corrections 1-bensene 1 -S-1:C*C*C*C*C*C*C*1
	СН	128.8	-3.0 128.5	general corrections
	~		2.5 0.8 -3.0	1 -S-1:C*C*C*C*C*C*C*1 1 -N-C general corrections
	СН	119.7	128.5 0.6 -10.6	1-bensene 1 -S-1:C*C*C*C*C*C*C*1 1 -N-1:C*C*C*C*C*C*1
	СН	121.2	1.2 128.5 -10.6	general corrections 1-bensene 1 -N-1:C*C*C*C*C*C*C*1 1 -N/C)C
	CH	113.7	2.4 128.5 0.9	general corrections 1-bensene 1 -N-1:C*C*C*C*C*C*1
	CH	117 5	-15.4 -0.3	1 -N(C)C general corrections
0 0)		0.6	1 -S-1:C*C*C*C*C*C*1 1 -N-C
	СН	128.9	128.5 2.5 0.9	1-bensene 1 -S-1:C*C*C*C*C*C*C*1 1 -N-1:C*C*C*C*C*C*1
	СН	128.8	-3.0 128.5 2.5	general corrections 1-bensene 1 -S-1:C*C*C*C*C*C*1
	сн	119.7	0.8 -3.0 128.5	1 -N-C general corrections 1-bensene
			0.6	1 -S-1:C*C*C*C*C*C*1 1 -N-1:C*C*C*C*C*C*1 general corrections
	CH	117.5	128.5 0.6 -16.2	1-bensene 1 -S-1:C*C*C*C*C*C*C*1 1 -N-C
	СН	121.2	4.6 128.5 -10.6	general corrections 1-benzene 1 -N-1:C*C*C*C*C*C*1
	СН	113.7	0.9 2.4 128.5	1 -N(C)C general corrections 1-benzene
			0.9 -15.4 -0.3	1 -N-1:C*C*C*C*C*C*1 1 -N(C)C general corrections
	CH3	41.3	-2.3 28.3 9.3	<pre>aliphatic 1 alpha -N 1 beta -1:C*C*C*C*C*C*C*C*1 beta -C</pre>
	CH3	41.3	-3.4 -2.3 28.3	general corrections aliphatic 1 alpha -N
			9.3 9.4 -3.4	<pre>1 beta -1:C*C*C*C*C*C*C*1 1 beta -C general corrections</pre>
	CH3	29.6	-2.3 28.3 9.3	aliphatic 1 alpha -N 1 beta -1:C*C*C*C*C*C*C*1
			-5.7	general corrections

Figure S2 Calculation results of the ChemNMR ¹³C for the PTAPA calculated by ChemDraw Professional 17.0.

ChemNMR ¹³C Estimation

Protocol of the C-13 NMR Prediction: (Lib=S)

Figure S4 SEM images of PTAPA before and after BXJ salt tuning.

Figure S5 SEM images of PAPA before and after BXJ salt tuning.

Figure S6 N₂ adsorption and desorption isotherm, nonlocal density functional theory-pore size distribution and cumulative pore volume of **PTAPA** (a-c) and **PAPA** (d-f) before and after different dosage of Na₂SO₄ during the polymerization. The pink rectangular strips highlight the microporous region.

Figure S7 XRD patterns of **PTAPA** (a-b) and **PAPA** (c-d) before and after BXJ- sodium salt and BXJ- nitrate salt tuning.

Figure S8 TEM images of PTAPA before and after 0.75 mM NaF tuning.

Figure S9 TEM images of PAPA before and after 0.50 mM NaF tuning.

Figure S10 PTAPA (a-d) and **PAPA** (e-h) concentration measured with UV-vis plotted with Hansen solubility parameter of solvent: (a, e) total-, (b, f) disperse-, (c, g) polar- and (d, h) hydrogen bonding- solubility parameters (solid points highlight the HSPs of THF).¹

Figure S11 N_2 adsorption and desorption isotherm, nonlocal density functional theory-pore size distribution and cumulative pore volume of **PTAPA** (a-c) and **PAPA** (d-f) synthesized in different solvents without and with 0.75 mM or 0.5 mM Na_2SO_4 . The pink rectangular strips highlight the microporous region.

Figure S12 SEM images of CMP-1, PTCT, p-PPF before and after BXJ salt tuning.

Figure S13 TGA and DTG curves of PTAPA (a&b) and PAPA (c&d) before and after salt tuning.

Figure S14 FTIR spectra of **PTAPA** (a, b) and **PAPA** (c, d) before and after tuned by BXJ-salts with different Na_2SO_4 dosages and solvents.

Figure S15 FTIR spectra of CMP-1, PTCT, p-PPF before and after BXJ salt tuning.

Figure S16 N₂ adsorption and desorption isotherm (a) and nonlocal density functional theorypore size distribution (b) of three PTAPAs after $Ba(NO_3)_2$ tuning (notes that their starting materials were purchased from Shanghai Aladdin Bio-Chem Technology Co., LTD. Additionally, their porosities were acquired from a Micromeritics ASAP2460 machine).

Section S2 Introduction to Hansen solubility parameters^{2, 3}

The solubility parameter approach proposed by Hansen for predicting polymer solubility and the compatibility of solvent for polymer synthesis has been in wide use. Specifically, there are three major types of interactions in common organic materials. The equation governing the Hansen parameters is that the total interaction energy, *E*, is the sum of the individual energies:

 $E = E_D + E_P + E_H$, where E_D is energy of dispersion interactions; E_P is energy of polar interactions; E_H is energy of hydrogen bonding.

(1) The first important type of interaction is the nonpolar interactions, which is derived from atomic forces and is also called dispersion interactions (*E*_D) in the literature. It is related to the molar volumes of the solvent (which is generally hard to be tuned by salts). (2) The second type of interaction energy, namely the polar interactive energy (*E*_P), is caused by permanent dipole-permanent dipole interaction, which could be calculated from the equation shown as $E_P = 37.4 \ (DM)^* V^{1/2}$, where *DM* is the dipole moment; *V* is the molar volume. (3) The third major interaction energy source is hydrogen bonding, *E*_H, which results from the interaction among molecules because of hydrogen bonds. Noted that *E*_P and *E*_H could be tuned through changing the type of solvents or through the addition of inorganic salts; these interactions should increase with the electronegativity of the salts.

The total solubility parameter could be acquired by dividing these values by the molar volume to yield:

$$E/V = E_D/V + E_P/V + E_H/V \quad \text{or} \quad \delta_T^2 = \delta_D^2 + \delta_P^2 + \delta_H^2.$$

To evaluate the compatibility of Hansen solubility parameters between solvent and polymer, the difference in δ_{τ} or $(|\delta_{\tau}| = |\delta_{\tau, polymer} - \delta_{\tau, solvent}|)$ was studied. If $|\delta_{\tau}| < 1$, then the solvent is classified as a good solvent; if $1 < |\delta_{\tau}| < 3$, then the solvent is classified as an intermediary solvent; for larger differences the solvent is classified as a poor solvent and not suitable for synthesis.

Section S3 Calculation of Hansen solubility parameters of CMPs

The Hansen solubility parameters of **PTAPA** and **PAPA**, respectively, were determined according to the literature and our previously published paper.^{1, 4} The Hansen solubility parameters (HSPs) of **PTAPA** and **PAPA** were acquired as solubility parameters related to the solvents that showed the highest dispersion concentration.

(Step 1) The polymers (**PTAPA** and **PAPA**) before salt tuning were dispersed into 13 different solvents with known HSPs (i.e. hexane, ethyl acetate, diethyl ether, ethanol, toluene, dichloroethane, chloroform, acetone, isopropanol, THF, acetonitrile, water and 1,4-dioxane, see Table S2 below) with the assistance of a high-pressure jet mill followed by ultra-sonication.

(Step 2) Samples were left dispersed in the selected solvents for 24 hours.

(Step 3) The Beer-Lambert-Bouguer law was applied to determine the concentration of the polymers in the supernatant of the dispersions at the wavelength of maximum absorbance of the polymers (380 and 669 nm, for **PTAPA** and **PAPA**, respectively). The maximum concentration of the polymers in each solvent was then plotted versus the HSP components of the solvents (see **Figure S9**). The HSP components of the polymers could be estimated from these plots with the statistical method B-Spline fitted by OriginPro 2017 software, according to literature reports.¹⁻⁴ Thus, Hansen solubility parameters of the **CMPAs** could be estimated.

(Step 4) To validate the HSPs of the polymers estimated through the methodology above, the difference between calculated $\delta_{T, c}$ ($\delta_{T, c}$ was calculated from the equation $\delta_{T}^{2} = \delta_{D}^{2} + \delta_{P}^{2} + \delta_{H}^{2}$, where δ_{D} , δ_{P} and δ_{H} were acquired from the fitting shown above) and the estimated $\delta_{T, e}$ (which was acquired from fitting shown above) can be considered.

Section S4 Supplementary tables

	lon	Surface area	Total Pore		Ultramicropore	CO ₂	Ref
	۲۵۵۱۵۵ (۸)	(III-'g -)	(cm ³ .c ⁻¹)	(cm ³ .g ⁻¹)	(cm ³ ·g ⁻¹)		
	(A)		(ciii-, g -)	(ciii-,8 -)	(ciiig -)	275 K,	
						I atm	
Control		го	0.066	0.046	0.026		2
Control	-	20	0.000	0.046	0.026	0.70	2
NaF	1.33	1134	0.89	0.83	0.41	3.23	2
NaCl	1.84	1123	0.67	0.65	0.33	3.05	2
NaBr	1.95	1114	0.83	0.71	0.34	3.44	2
Nal	2.20	1075	0.69	0.63	0.37	3.60	2
LiNO ₃	0.76	1152	0.62	0.61	0.34	2.78	2
NaNO ₃	1.02	1028	0.82	0.78	0.43	3.48	2
KNO ₃	1.33	873	0.53	0.52	0.33	2.43	2
Ba(NO ₃) ₂	1.42	831	0.50	0.49	0.34	3.20	2
0.33 mM Na ₂ SO ₄	2.35	858	0.46	0.46	0.33	2.38	2
$0.50 \text{ mM} \text{ Na}_2 \text{SO}_4$	2.35	871	0.47	0.46	0.32	2.61	2
0.75 mM Na ₂ SO ₄	2.35	843	0.48	0.46	0.33	2.75	2
1.00 mM Na ₂ SO ₄	2.35	704	0.37	0.36	0.27	2.10	2
1.50 mM Na ₂ SO ₄	2.35	680	0.36	0.35	0.24	1.97	2
$2.00 \text{ mM} \text{ Na}_2 \text{SO}_4$	2.35	579	0.33	0.31	0.22	1.74	2
Toluene without salts	-	38	0.055	0.028	0.009	0.43	2
Toluene/0.5 mM Na ₂ SO ₄	2.35	131	0.44	0.095	0.02	1.23	2
THF without salts	-	58	0.066	0.046	0.026	0.70	2
THF/0.5 mM Na ₂ SO ₄	2.35	871	0.47	0.46	0.32	2.61	2
Dioxane without salts	-	98	0.14	0.034	0.003	1.27	2
Dioxane/0.5 mM Na ₂ SO ₄	2.35	982	0.55	0.54	0.45	3.43	2
CMP-1	-	834	0.53	0.33	N.A.	N.A.	5
COF-1	-	711	0.32	N.A.	N.A.	N.A.	6
CTF-1	-	791	0.40	N.A.	N.A.	N.A.	7
MOF-1	-	516	0.29	N.A.	N.A.	0.86	8

Table S1 Porosity parameters and CO_2 uptake at 1 atm and 273 K of **PTPA** networks produced by the BXJ route with different anions, cations, ion dosage and solvents.²

[a] Surface area calculated from the N₂ adsorption isotherm using the Brunauer-Emmett-Teller method. [b] The total pore volume calculated from the desorption branch of the N₂ isotherm using the NL-DFT method. [c] The micropore volume calculated from the desorption branch of the N₂ isotherm using the NL-DFT method for micropore (r<2 nm) volume. [d] The ultramicropore volume calculated from the desorption branch of the N₂ isotherm using the NL-DFT method for micropore (r<0.7 nm) volume.

Entry	Solvent/Polymer	$\delta_{\! T}{}^{[a]}$	$\delta_{\!\scriptscriptstyle D}{}^{[{ t b}]}$	$\delta_{\!P}^{[c]}$	$\delta_{\!\scriptscriptstyle H}{}^{[d]}$	Absorbance [e]
						/a.u. (at 380 nm)
1	Hexane	15.3	14.9	0	0	0.001587
2	Ethyl Acetate	18.5	15.8	5.3	7.2	0.013854
3	Diethyl ether	15.6	14.5	2.9	5.1	0.013474
4	Ethanol	26.5	15.8	8.8	19.4	0.020121
5	Toluene	18.2	18	1.4	2	0.421926
6	Dichloroethane	18.4	16.6	8.2	0.4	0.063195
7	Chloroform	18.9	17.8	3.1	5.7	0.283163
8	Acetone	20	15.5	10.4	7	0.034689
9	Isopropanol	23.5	17.6	6.1	15.1	0.52746
10	THF	19.5	16.8	5.7	8	0.171827
11	Acetonitrile	24.6	15.3	18	6.1	0.231214
12	Water	47.9	15.5	16	42.4	0.023198
13	1,4-Dioxane	20.5	19	1.8	7.4	0.412365
14	ΡΤΑΡΑ	23.4	17.6	6.3	14.0	

Table S2 Hansen solubility parameters of 13 solvents used in this work; the **PTAPA** dispersibility as defined by concentration after dispersion in 13 solvents and its Hansen solubility parameters.

[a] δ_T represents the total Hansen solubility parameter. [b] δ_D represents the dispersion interaction parameter. [c] δ_P represents the permanent dipole interaction parameter. [d] δ_H represents the hydrogen-bonding interaction parameter. [e] All measurements were performed in triplicate, and average values presented in this table.

Entry	Solvent/Polymer	$\delta_{\! T}{}^{[a]}$	$\delta_{\!\scriptscriptstyle D}{}^{[{ t b}]}$	$\delta_{\!\scriptscriptstyle P}^{[{\mathfrak c}]}$	$\delta_{\!\scriptscriptstyle H}{}^{[d]}$	Absorbance ^[e]
						/a.u. (at 669 nm)
1	Hexane	15.3	14.9	0	0	0.098909
2	Ethyl Acetate	18.5	15.8	5.3	7.2	0.107804
3	Diethyl ether	15.6	14.5	2.9	5.1	0.011232
4	Ethanol	26.5	15.8	8.8	19.4	0.023324
5	Toluene	18.2	18	1.4	2	0.132434
6	Dichloroethane	18.4	16.6	8.2	0.4	0.078766
7	Chloroform	18.9	17.8	3.1	5.7	0.209878
8	Acetone	20	15.5	10.4	7	0.154546
9	Isopropanol	23.5	17.6	6.1	15.1	0.179874
10	THF	19.5	16.8	5.7	8	0.217569
11	Acetonitrile	24.6	15.3	18	6.1	0.223444
12	Water	47.9	15.5	16	42.4	0.020096
13	1,4-Dioxane	20.5	19	1.8	7.4	0.282432
14	ΡΑΡΑ	20.9	18.9	1.8	7.3	

Table S3 Hansen solubility parameters of 13 solvents used in this work; the **PAPA** dispersibility as defined by concentration after dispersion in 13 solvents and its Hansen solubility parameters.

[a] δ_{τ} represents the total Hansen solubility parameter. [b] δ_{D} represents the dispersion interaction parameter. [c] δ_{P} represents the permanent dipole interaction parameter. [d] δ_{H} represents the hydrogen-bonding interaction parameter. [e] All measurements were performed in triplicate, and average values presented in this table.

POPs	Functional group	Surface area (m ² ·g ⁻¹)	CO₂ uptake at 273 K,	Ref.
	0.1		1 atm (mmol·g ⁻¹)	-
COF-1	Boronate ester	750	2.23	9
COF-5	Boronate ester	1670	1.34	9
COF-6	Boronate ester	750	1.40	9
COF-8	Boronate ester	1350	1.22	9
COF-102	Boronate ester	3620	1.38	9
MAPOP-1	Acetal	310	2.86	10
MAPOP-2	Acetal	660	2.77	10
MAPOP-3	Acetal	920	2.64	10
MKPOP-1	Acetal	210	1.98	11
MKPOP-2	Acetal	160	1.43	11
MKPOP-3	Acetal	590	2.61	11
CMP-1	Ethynyl	837	1.09	This work
CMP-1 (BXJ-NaF)	Ethynyl	1148	1.62	This work
CMP-1-COOH	Carboxyl group	522	1.60	12
CMP-1-(CH ₃) ₂	Methyl group	899	1.62	12
CMP-1-OH	Hydroxyl group	1043	1.80	12
DA-CMP-1	Aromatic amine	662	2.28	13
DA-CMP-2	Aromatic amine	603	1.64	13
TCMP-0	Triazine	963	2.38	14
TCMP-3	Triazine	691	2.25	14
TCPM-5	Triazine	494	1.22	14
PAF-1	Phenyl	5600	2.05	15
PAF-3	Phenyl	2932	3.48	15
PAF-4	Phenyl	2246	2.41	15
PECONF-1	Aromatic amine	499	1.86	16
PECONF-2	Aromatic amine	637	2.85	16
PECONF-3	Aromatic amine	851	3.49	16
РТСТ	Carbazole; triazine	981	1.94	This work
PTCT (BXJ-NaF)	Carbazole; triazine	1263	2.53	This work
<i>p</i> -PPF	Phenyl	35	0.55	This work
<i>p</i> -PPF (BXJ-NaF)	Phenyl	215	0.79	This work
ΡΑΡΑ	Aniline	723	2.41	This work
PAPA (BXJ-Na ₂ SO ₄)	Aniline	595	2.93	This work
PAPA (BXJ-NaF)	Aniline	1378	2.51	This work
РТРА	Aniline	58	0.70	3
PTPA (BXJ-Nal)	Aniline	1075	3.60	3
PTPA (BXJ-LiNO₃)	Aniline	1152	2.78	3
ΡΤΑΡΑ	Aniline	28	0.75	This work
PTAPA (BXJ-Na ₂ SO ₄)	Aniline	249	2.75	This work
PTAPA (BXJ-NaF)	Aniline	901	1.89	This work

fable S4 CO ₂ sequestratio	n capacities of typical p	porous organic polymers	(POPs).
---------------------------------------	---------------------------	-------------------------	---------

	1 (5/2	8
	Surface area (m ² ·g ⁻¹)	Total Pore volume (cm ³ ·g ⁻¹)
PTAPA-Ba(NO ₃) ₂ - repeat 1	550	0.41
PTAPA-Ba(NO ₃) ₂ - repeat 2	546	0.38
PTAPA-Ba(NO ₃) ₂ - repeat 3	553	0.39

Table S5 Porosities of three PTAPA samples after $Ba(NO_3)_2$ tuning.

References

- 1. S. Ata, T. Mizuno, A. Nishizawa, C. Subramaniam, D. N. Futaba and K. Hata, *Sci. Rep.*, 2014, **4**, 7232.
- 2. D. J. Hansen C., Kontogeorgis G., Panayiotou C., Williams L., Poulsen T., Priebe H., Redelius P., Boca Raton: CRC Press, 2007.
- 3. J. Chen, W. Yan, E. J. Townsend, J. Feng, L. Pan, V. Del Angel Hernandez and C. F. J. Faul, *Angew Chem Int Ed*, 2019, **58**, 11715-11719.
- 4. H. Launay, C. M. Hansen and K. Almdal, *Carbon*, 2007, **45**, 2859-2865.
- 5. J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I. Cooper, *Angew. Chem.*, 2007, **119**, 8728-8732.
- A. P. Côté, A. I. Benin, N. W. Ockwig, M. O'Keeffe, A. J. Matzger and O. M. Yaghi, *Science*, 2005, 310, 1166-1170.
- 7. P. Kuhn, M. Antonietti and A. Thomas, *Angew. Chem. Int. Ed.*, 2008, **47**, 3450-3453.
- 8. Z. Guo, H. Xu, S. Su, J. Cai, S. Dang, S. Xiang, G. Qian, H. Zhang, M. O'Keeffe and B. Chen, *Chem. Commun.*, 2011, **47**, 5551-5553.
- 9. H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, **131**, 8875-8883.
- 10. X. Ding, H. Li, Y.-C. Zhao and B.-H. Han, *Poly. Chem.*, 2015, **6**, 5305-5312.
- 11. H. Li, X. Ding, Y.-C. Zhao and B.-H. Han, *Poly*, 2016, **89**, 112-118.
- 12. R. Dawson, D. J. Adams and A. I. Cooper, *Chem. Sci.*, 2011, **2**, 1173-1177.
- 13. X. Wang, Y. Zhao, L. Wei, C. Zhang and J.-X. Jiang, J. Mater. Chem. A, 2015, **3**, 21185-21193.
- 14. S. Ren, R. Dawson, A. Laybourn, J.-x. Jiang, Y. Khimyak, D. J. Adams and A. I. Cooper, *Poly. Chem.*, 2012, **3**, 928-934.
- 15. T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, *Energy Environ. Sci.*, 2011, **4**, 3991-3999.
- 16. P. Mohanty, L. D. Kull and K. Landskron, *Nat. Commun.*, 2011, **2**, 401.