Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supplementary Information

The Relationship between Oxide-Ion Conductivity and Cation Vacancy Order

in the Hybrid Hexagonal Perovskite Ba₃VWO_{8.5}

Asma Gilane^{a, b}, Sacha Fop^a, Falak Sher^b, Ronald I. Smith^c and Abbie C. Mclaughlin^{*a},

^a The Chemistry Department, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, United Kingdom.

E-mail: a.c.mclaughlin@abdn.ac.uk

- ^b Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan. E-mail: <u>fsher@lums.edu.pk</u>
- ^c ISIS Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, OX11 0QX, United Kingdom

Figure S1. Dependence of the total conductivity of Ba₃WVO_{8.5} against the oxygen partial pressure.

Figure S2. Equivalent circuit model employed for analysis of the Ba₃VWO_{8.5} impedance data collected under dry air; R indicates a resistor, while CPE is a constant phase element.

Figure S3. Representative equivalent circuit fit of complex impedance plots of $Ba_3VWO_{8.5}$ recorded in dry air at 500 °C and 700 °C. The numbers and corresponding filled circles indicate selected frequency decades; the red line is the equivalent circuit fitting.

Figure S4. Fitted X-ray diffraction histogram of Ba₃WVO_{8.5} at room temperature.

Table S1: Refined atomic parameters from Rietveld fit of the $R\overline{3}m$ H model from powder Xray diffraction data. The oxygen occupancies were fixed in the refinement. The M1 site is composed of 50% V and 50% W.

ΑΤΟΜ	SITE	x	Y	Z	FRACTION	U _{ISO} (Ų)
BA1	3a	0	0	0	1	0.0141 (6)
BA2	6 <i>c</i>	0	0	0.20721(2)	1	0.0141 (9)
M1	6 <i>c</i>	0	0	0.39834(4)	1	0.0168 (2)
01	18h	0.1756(3)	0.8244(3)	0.1003(1)	1	0.0261 (7)
02	9e	0.5	0	0	0.448	0.0261 (7)
03	6 <i>c</i>	0	0	0.3313(3)	0.577	0.0261 (7)

Data were refined in space group $R\overline{3}m$ H with $\chi^2 = 2.93$, $R_p = 4.10\%$, $R_{wp} = 5.55\%$; refined unit cell parameters; a = b = 5.822215(1) Å, c = 21.13536(7) Å, V = 620.450(4) Å³.

Bond di	stance (Ų)	Bond angle (°)		
Ba1–O1	2.7694 (4)	01-M1-01	99.53 (5)	
Ba1–O2	2.91127 (3)	01-M1-03	126.32 (19)	
			107.62 (9)	
			119.67 (20)	
Ba1–O3	3.1011 (22)	01-M1-02	86.373 (12)	
			170.77 (7)	
Ba2–O1	2.8215 (7)	02-M1-02	86.93 (5)	
	2.95763 (14)			
Ba2—O2	3.1560 (6)			
Ba2—O3	2.5444 (12)			
M1-01	1.8378 (8)			
M1-02	2.1160 (9)			
M1-03	1.4551 (19)			

Table S2: Selected bond distances and angles for $Ba_3VWO_{8.5}$. M indicates W/V.

Figure S5. Bond-valence site energy map calculated for $Ba_3NbWO_{8.5}$. Darker colors indicate the lower isosurface levels (< 0.9 eV over the global minimum), while the lighter colours are for the highest isosurface levels (between 1.0 eV and 1.6 eV over the global minimum).

Figure S6. Bond-valence site energy map calculated for Ba₃NbMoO_{8.5} with the M2 occupancy set to zero, to give a M1-vac-M1 stacking. Darker colors indicate the lower isosurface levels (< 0.5 eV over the global minimum), while the lighter colours are for the highest isosurface levels (between 0.7 eV and 1.4 eV over the global minimum).

Figure S7. Bond-valence site energy map calculated for Ba₃VWO_{8.5} with the M1 occupancy set to 0.9 and the M2 occupancy set to 0.1, to give the hybrid metal stacking. This BVSE map demonstrates that the O1-O1 connectivity (with relative barrier of 1.470 eV) along the edges of the M2O16 octahedra is re-established when the M2 site is occupied. Interestingly, the relative barrier for the O1-O2 pathway segment is also reduced to 0.690 eV. Darker colors indicate the lower isosurface levels (< 0.5 eV over the global minimum), while the lighter colours are for the highest isosurface levels (between 0.65 eV and 1.6 eV over the global minimum).