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Model Equations
Fourier’s Law
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Coupled thermo-elastic-plastic differential equations
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where €is the strain, [ ep] is the elastic-plastic matrix, [k] is the thermal conductivity matrix, D is the thermoplastic

coupling factor, T is the temperature, P is the specific mass, 4 is the heat flux, ¥ is the generalized thermal modulus,

Cp is the specific heat, B is the thermal modulus tensor, @ is the heat generation, V the rate of displacement, f is

the body forces and P is the surface tractions.

Simulation assumptions

The following main assumptions were considered: i) air convection at the sides of the substrates are negligible; ii)
emissivity of the glass substrate is 1, and there is no radiation or convection in the space between the two
substrates; iii) the laser beam is absorbed at the top of glass frit and the laser beam absorption in the cover
substrate is negligible; iv) the glass frit is bonded to the both substrates; v) materials are isotropic and thermal
and mechanical properties are constant with temperature; this includes the three layers of glass frit here treated
as made of a single material. Quadratic mesh elements were considered, with mesh sizes of < 25 um for the glass
frit and < 1 mm for the rest of the bodies. The properties of the glass frit and substrates are presented in Table
S1.

Table S1 — Properties of the glass frit and substrates used in the thermal stress simulation.

Glass frit Substrate
P kg m3] 5000 2500
CTE [10® °C?] 8 8.5
E [GPa] 80 50
Poisson’s ratio 0.3 0.18
Thermal Conductivity [W °C* m] 3 1.4
Specific Heat [J kgt °C1] 600 750
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Figure S1 — Schematic diagram of the procedure for the fabrication of laser-sealed PSCs. Note that the masking

steps are not included in the schemes.
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Figure S2 — Schematic view of “LaserStation” used for the laser assisted glass encapsulation.
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Figure S3 — Temperature history of the two thermal cycling tests.
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Figure $4 — Simulated temperature during the sealing process at the glass frit and substrates. (a) the device is
placed in the furnace at the process temperature of 50 °C until a homogeneous temperature is reached
(temperature stabilization period is not represented), (b) LB, Starts to radiate and the temperature in the
sealant increases up to 110 + 10 °C (c) LByong is emitted and the, temperature in the glass frit reaches up to >
380 °C, bonding the substrates, (d, e and f) LB, is turned off and LBy,..; continues emitting, maintaining the
sealant material at 110 + 10 °C, (g and h) laser-sealing conclusion, LBy, is turned off and the temperature in the

sealant decreases to the process temperature, i) scheme of the cross-section view of the simulation model.
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Figure S5 — Thermocouples positions for temperature measurement during sealing process.
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Figure S6 — Temperature history at the rear side of the glass (i.e. under cell substrate) for 2.2 mm and 1.1 mm

Figure S7— Current density vs. potential curves of NS&NM, M and M&S devices.
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Figure S8 — Reflectance spectra of a PSC before and after sealing process; and for a hermetically and a non-

hermetically encapsulated devices, after 500 h of humid air exposure.
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Figure S9 — XRD pattern for a fresh device and for hermetically and non-hermetically encapsulated devices, after

the thermal cycling test between -40 °C to 85 °C.
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Figure S10 — XRD pattern for a fresh device and for hermetically and non-hermetically encapsulated devices,

after the thermal cycling test between -40 °C to 65 °C.



