Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

SmBaCo₂O_{5+ δ} double perovskite with epitaxially grown Sm_{0.2}Ce_{0.8}O_{2- δ}

nanoparticles as the promising cathode for solid oxide fuel cells

Zhihong Du^{a,b}, Keyun Li^a, Hailei Zhao^{a,b,*,} Xu Dong^a, Yang Zhang^a, Konrad Świerczek^{c,d}

^(a) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

^(b) Beijing Municiple Key Lab for Advanced Energy Materials and technologies, Beijing 100083, China

^(c) Department of Hydrogen Energy, Faculty of Energy and Fuels, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

^(d) AGH Centre of Energy, AGH University of Science and Technology, ul. Czarnowiejska 36, 30-054 Krakow, Poland

Supporting information

^{*} Corresponding author at: School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China. Tel.: +86 10 82376837; Fax.: +86 10 82376837; E-mail address: hlzhao@ustb.edu.cn (H. Zhao).

Figure S1. Rietveld refinement of room temperature XRD patterns of SBCO and SBCO-SDC

Figure S2. Polarization resistance (R_d) versus reciprocal temperature for SBCO-SDC and SBCO electrodes in air.

Cathode	anode	Electrolyte	Power		
		thickness /	Temperatur	density	nafananaa
			e / °C	/ mW	reference
		μm		cm ⁻²	
$NdBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$	Ni–GDC	300	850	904	[1]
$Pr_{1.1}Ba_{0.9}Co_2O_{5+\delta}$	Ni-SDC	300	800	732	[2]
$PrBa_{0.5}Sr_{0.5}Co_2O_{5+\delta}$	Ni-GDC	300	800	1021	[3]
PrBaC ₂ O _{5+ð} -SDC				758	
$NdBaC_{2}O_{5+\delta}\text{-}SDC$	Ni-SDC	300	800	707	[4]
$SmBaC_2O_{5+\delta}$ -SDC				685	

Tab. S1. Comparison of peak power density for LSGM electrolyte-supported cells between $SmBaCo_2O_{5+\delta}$ -SDC NPs and selected double perovskite cathodes.

$GdBaC_2O_{5+\delta}$ -SDC				608	
$YBaCo_{1.4}Cu_{0.6}O_{5+\delta}$	Ni-GDC	300	850	815	[5]
$YBa_{0.5}Sr_{0.5}Co_{1.4}Cu_{0.6}O_{5+\delta}$	Ni–GDC	300	850	398	[6]
$SmBa_{0.5}Sr_{0.5}CoCuO_{5+\delta}$	NiCu–GDC	300	850	857	[7]
$NdBaCoFeO_{5+\delta}30SDC$	Ni-SDC	300	800	892	[8]
$PrBa_{0.8}Ca_{0.2}Co_2O_{5+\delta}$	$PrBaMn_2O_{5+\delta}$	250	700	460	[9]
$GdBa_{0.4}Sr_{0.6}Co_2O_{5+\delta}$	Ni-GDC	500	800	490	[10]
$NdBaCo_{2/3}Fe_{2/3}Cu_{2/3}O_{5+\delta}$	Ni-GDC	300	800	719	[11]
$PrBa_{0.5}Sr_{0.5}Co_{1.5}Fe_{0.5}O_{5+\delta}$	Ni-SDC	300	850	697	[12]
SmBaCo ₂ O _{5+ð} -SDC NPs	Ni-GDC		850	977	
			800	806	This
		300	750	592	work
			700	408	
			650	230	

References:

- [1] Lü S. et al. J. Power Sources, 2010, 195, 8094-8096.
- [2] Jiang L. et al. *Electrochim. Acta*, 2014, **133**, 364–372.
- [3] Lü S., Long G., Meng X, et al. Int. J. Hydrogen Energy, 2012, 37, 5914-5919.
- [4] Zhou Q. et al. J. Power Sources, 2010, 195, 2174-2181.
- [5] Zhang Y., Yu B., Lü S., et al. *Electrochim. Acta*, 2014, **134**, 107-115.
- [6] Lü S. et al. Ceram. Int., 2014, 40, 14919-14925.
- [7] Wang B., Long G., Li Y., et al. Int. J. Hydrogen Energy, 2016, 41, 13603-13610.
- [8] Jin F., Liu J., Shen Y., et al. J. Alloys Compd., 2016, 685, 483-491.
- [9] Lim C., Jun A., Jo H., et al. J. Mater. Chem. A, 2016, 4, 6479-6486.
- [10] Kim, J. H., Prado, F., Manthiram, A. J. Electrochem. Soc., 2008, 155(10), B1023-B1028.
- [11] Jin F., Li L., He, T. J. Power Sources, 2015, 273, 591-599.
- [12] Jiang L., Wei T., Zeng R., et al. J. Power Sources, 2013, 232, 279-285.