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Supplementary Information.

Gaussian Process Bayesian Optimization. 

The Gaussian process Bayesian optimization (GPBO) algorithm can be used to address 

optimization problems of which objective function is expansive by predicting the 

experimental results using input-output relations, which in turn leads us to avoid performing 

unnecessary experiments. Here, we use the Thompson sampling Bayesian optimization with 

the hyperparameters of its kernel function estimated using maximum a posteriori (MAP)1. 

The algorithm is modified to be suitable for optimization of the pilot-scale CO production 

system. When assuming the evaluations of jCO is distributed as a Gaussian Process (GP) with 

its zero mean function and covariance function, , then it can be expressed as:𝑘(𝑥, 𝑥')

                                    (S1)𝑗𝐶𝑂 (𝑥) ~ 𝐺𝑃(0, 𝑘(𝑥,𝑥'))

where the operating condition, = {E, T, P , is the vector of optimization variables. Note 𝑥 }

that the acquisition function, , for GPBO is selected as the surrogate model describing 𝛼(𝑥)

. The covariance function, k  is commonly selected from the stationary Matérn class. 𝑗𝐶𝑂 (𝑥) (𝑥,𝑥'),

In this study, Matérn 3 kernel is adopted to approximate the covariance function2

              (S2)𝑘(𝑥,𝑥') =  𝜎2
𝛼(1 + 3𝑟)exp ( ‒ 3𝑟) +  𝜎2

𝑛𝛿(𝑥,𝑥')  

where  is the output variance of ,  is the observation noise, and  is the Kronecker 𝜎𝛼 𝛼(𝑥) 𝜎𝑛 𝛿

delta. The distance, , can be calculated as:𝑟

                                       (S3)𝑟 = (𝑥 ‒ 𝑥')Λ(𝑥 ‒ 𝑥')

where  is diagonal matrix of which elements indicate the length scales of the Λ

optimization variables. The GP can be defined using the hyperparameters, { , and 𝜎𝛼, 𝜎𝑛, Λ}



each of them is assumed to follow a normal distribution. MAP estimator is adopted to find 

the best estimate of the hyperparameters using training data1. When  number of training 𝑛𝑡

points, , …, , and their corresponding evaluations of the CO partial current density, 𝑋 = {𝑥1
𝑥𝑛𝑡

}

, …, , …, , are given, the covariance function of the posterior 𝑌 = {𝑗𝐶𝑂(𝑥1) 𝑗𝐶𝑂(𝑥𝑛𝑡
)} = {𝑦1 𝑦𝑛𝑡

}

distribution resulted from MAP estimation can be derived as in Eq. (S4).

                   (S4)𝑘(𝑥,𝑥')|𝑋, 𝑌 =  𝑘(𝑥,𝑥') ‒ Σ(𝑥,𝑋)Σ ‒ 1Σ(𝑥,𝑋)𝑇

where , and .
Σ = |𝑘(𝑥,𝑥')|𝑛𝑡 × 𝑛𝑡

Σ(𝑥,𝑋) = |𝑘(𝑥,𝑥 '
1), …, 𝑘(𝑥,𝑥 '

𝑛𝑡
)|

The covariance function can be approximated as , and using spectral 𝑘(𝑥,𝑥') =  𝜉(𝑥)𝑇𝜉(𝑥)

sampling, the multiplicand, , is described as:𝜉(𝑥)

                                  (S5)
𝜉(𝑥) = 2

𝛽
𝑀

𝑐𝑜𝑠⁡(𝑊𝑥 + 𝑏) 

where  is a proportionality constant and  is the number of samples.  and  are 𝛽 = 𝜎2
𝛼 𝑀 𝑊 𝑏

sampled from the probability distribution of the hyperparameters and the uniform distribution, 

, respectively. The acquisition function is known to be linearly approximated using 𝑈(0, 2𝜋)

.𝜉(𝑥)

                                             (S6)𝛼(𝑥) ≈ 𝜉(𝑥)𝑇𝜃 

where . The values of  and V are derived as:𝜃 ~ 𝑁(𝑚, 𝑉) 𝑚

                                 (S7)𝑚 = (𝑍𝑇𝑍 +  𝜎2
𝑛𝐼) ‒ 1𝑍𝑇𝑌 ‒ 1  

                                     (S8)𝑉 = (𝑍𝑇𝑍 +  𝜎2
𝑛𝐼) ‒ 1𝜎2

𝑛  



where  indicates the collection of  estimated at , …, . The  acquisition 𝑍 𝜉(𝑥) 𝑋 = {𝑥1
𝑥𝑛𝑡

} 𝑘𝑡ℎ

function sampled from the posterior distribution of the hyperparameter is given by:

                                            (S9)𝛼𝑘(𝑥) ≈ 𝜉𝑘(𝑥)𝑇𝜃𝑘 

where . The  evaluation point is obtained by performing 𝜃𝑘 ~ 𝑁(𝑚𝑘, 𝑉𝑘) (𝑘 + 1)𝑡ℎ

minimization of the acquisition function Eq. (S11). 

                                        (S10)𝑥𝑘 + 1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥 𝛼𝑘(𝑥)

Eq. (S12) is solved using Genetic Algorithm (GA)3.



Computer-aided design of in-house single cell with pin-type channels. 

To design the optimal electrochemical single cell pin structure of both cathode and anode side 

for electrolyte stream, we employed finite-volume methods (FVM) based computational fluid 

dynamics (CFD) model. Two-layered fluid zones consisted of electrolyte flow zone and 

porous zone (carbon paper with a catalyst with porosity 0.73) was used to represent in-house 

single cell with pin-type channels under convective mass transfer of CO2 saturated aqueous 

electrolyte solution (Fig. S1). Three-dimensional Navier-Stokes equation with the k-epsilon 

turbulence model was used. Notably, carbon paper with a catalyst for electrochemical CO2 

reduction reaction was assumed as porous media so that mass transport through convection 

can be detected forced by pressure differences. Simulations were performed by using ANSYS 

FLUENT 18.2 with MPI parallel computing using four cores of Intel i7-7820X (3.6 GHz) 

processors.

We carried out the comparative study between two geometry cases (case 1: 1 mm / 

1mm) and (case 2: 4.3 mm / 4.5 mm) of (fin width and fin distance), respectively (Fig. S2). 

Through the simulation results, we can infer that the fin distance and width should be narrow, 

which can improve the overall cell performance. This is because the narrower the fin distance 

and the width increase the pressure drop (Fig. S3), which leads to developing the velocity 

vector field of electrolyte with aqueous CO2 moving toward the carbon paper (Fig. S2 (c) and 

(d)). Thus, this acceleration of mass transport can increase the CO2 concentration at the 

catalyst layer, which leads to an increase in current density and CO Faraday efficiency. 

In order to analyze reactor performance more quantitatively, global sensitivity 

analysis of pressure drop ( ), velocity uniformity ( ),), and average velocity ( ) for fin Δ𝑃 𝛾𝑎 �̅�𝑎

width and fin distance was performed (Fig. S4). Pressure drop was calculated as the pressure 



difference between inlet and outlet. Area-weighted velocity uniformity and area-weighted 

average velocity were defined by Eq. (S11) and Eq. (S12), respectively.

  

𝛾𝑎 = 1 ‒

𝑁

∑
𝑖 = 1

[(|𝑣𝑖 ‒ �̅�𝑎|)𝐴𝑖]

2|�̅�𝑎|
𝑁

∑
𝑖 = 1

𝐴𝑖

(S11)

  

�̅�𝑎 =

𝑁

∑
𝑖 = 1

𝑣𝑖𝐴𝑖

𝑁

∑
𝑖 = 1

𝐴𝑖

(S12)

where  and are velocity and area at index i on N facets. Therefore,  has a value between 𝑣𝑖 𝐴𝑖 𝛾𝑎

0 and 1, and the closer it is to 1, the more evenly distributed the entire surface, and  is the �̅�𝑎

average value of the velocity at the specified surface. In order to maintain high reactivity, 

uniformity at porous media should be close to 1 because it is good to have a constant overall 

flow rate in a porous layer with a catalyst. In addition, slow average velocity is preferred in 

order to maximize the reactivity by securing a sufficient residence time (Fig. S4 (c), (d)). In 

order to satisfy this, it was confirmed that a relatively dense fin structure has more advantages 

because inevitably, high ΔP is required (Fig. S4 (b). Therefore, the design suggestion through 

the computer-aided design framework in this study is that fin width and fin distance should 

be designed between 1 mm – 2 mm. We fabricated the pin-type chanell cell for 50 cm2 active 

area with 1.5 mm fin width and distance to perform this pilot plant study. 



Figure S1. Computer-aided design for in-house single cell with pin-type channels. (a) The 

prototype fin structure with inlet and outlet channel. (b) Design variables (fin width and fin 

distance) to optimize the performance of the cell. (c) Side view geometry of simulation 

boundaries.



Figure S2. Comparison of velocity vector field and streamline in computational fluid 

dynamics simulation data of at different design variables of (a-d) fin width as 1 mm and fin 

distance as 1 mm, and (e-f) fin width as 4.34 mm and fin distance as 4.5 mm. (a,e) Velocity 

vector field at top view. (b,f) Streamline at top view. (c,g) Velocity vector field at side view. 

(d,h) Streamline at side view.



Figure S3. Pressure drop comparison at different design variables of (a) fin width as 1 mm 

and fin distance as 1 mm, and (b) fin width as 4.34 mm and fin distance as 4.5 mm. Black 

solid lines denotes equal pressure sections. 



Figure S4. Results of global sensitivity analysis using Latin hypercube sampling (a) 

throughout global space of design variables. Two-dimensional contour plot of (b) pressure 

drop, (c) uniformity at porous zone, and (d) average velocity at total zone (porous zone + free 

flow zone).



Ag catalyst charactorization.

The Cl doping concentrations are measured through energy dispersive spectroscopy (EDS) spectra of 

scanning electron microscopy (SEM), as shown in Figure S5. The measured Cl doping concentration 

was 1.22%. The morphology of Cl doped Ag electrode was demonstrated by SEM and their results 

are shown in Figure S6. Their morphology has a porous structure, which is considered to be good for 

mass transfer of CO2. In addition, the chemical state of the Ag electrode before and after Cl 

doping treatment, X-ray photoelectron spectroscopy (XPS) was conducted and their results 

are shown in Figure S7. After Cl doping process, Ag electrode was slightly oxidized owing to 

remained Cl component.

Figure S5. The EDS spectrum of Cl doped Ag electrode.



Figure S6. (a) Low and (b, c) high magnification SEM images of Cl doped Ag electrode.



Figure S7. XPS spectra of the Ag 3d for Ag electrode before and after Cl doping process.
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