## Switchable Molecular Sieving of Capping Metal Organic Framework

## Membrane

Shuai Zhang, Bo Gui, Teng Ben\*a and Shilun Qiu

<sup>a</sup> Department of Chemistry, University of Jilin, No. 2699 Qianjin Street, Changchun, Jilin Province, 130012, P. R. China. E-mail: tben@jlu.edu.cn

<sup>b</sup> Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, No. 299 Bayi Road, Wuhan, Hubei Province, 430072, P. R. China



**Scheme S1.** Schematic illustration of gas separation set-up (MFC: Mass flowmeter controller; GC: Gas chromatograph).



**Figure S1.** UV-visible spectra of UiO-68-azo after exposure to UV light (365 nm) for different time.



Figure S2. The XRD patterns of UiO-68-azo before (black) and after (red) UV irradiation.



**Figure S3.** The N<sub>2</sub> sorption isotherm and pore size distribution of UiO-68-azo (black) and UiO-68-azo after UV irradiation (red). The BET surface area and pore size are 2629 m<sup>2</sup> g<sup>-1</sup>, 2717 m<sup>2</sup> g<sup>-1</sup> and 1.41 nm, 1.41nm respectively.



**Figure S4.** The  $CO_2$  sorption isotherms of UiO-68-azo (black) and UiO-68-azo after UV irradiation (red) at A) 273 K and B) 298 K.



**Figure S5.** The isosteric enthalpy  $Q_{st}$  of  $CO_2$  for UiO-68-azo (black) and UiO-68-azo after UV irradiation (red). The  $Q_{st}$  are 21.6 kJ mol<sup>-1</sup> and 25.1 kJ mol<sup>-1</sup> respectively.



**Figure S6.** Droplet profiles with inserted static contact angle (CA) value (upper-right corner) on the UiO-68-azo membrane surface at different measuring time.



**Figure S7.** Droplet profiles with inserted static contact angle (CA) value (upper-right corner) on the  $\beta$ -CD@UiO-68-azo membrane surface at different measuring time.



**Figure S8.** Anhydrous FTIR spectrums of  $\beta$ -CD (black), UiO-68-azo (red) and  $\beta$ -CD@UiO-68-azo (blue).



**Figure S9.** The N<sub>2</sub> sorption isotherm and pore size distribution of UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red). The BET surface area and pore size are 2629 m<sup>2</sup> g<sup>-1</sup>, 2311 m<sup>2</sup> g<sup>-1</sup> and 1.41 nm, 1.41 nm respectively.



Figure S10. The CO<sub>2</sub> sorption isotherms of UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red) at A) 273 K and B) 298 K.



**Figure S11.** The isosteric enthalpy  $Q_{st}$  of  $CO_2$  for UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red). The  $Q_{st}$  are 21.6 kJ mol<sup>-1</sup> and 21.9 kJ mol<sup>-1</sup> respectively.



Figure S12. TGA curves of A) UiO-68-azo (black),  $\beta$ -CD@UiO-68-azo (red) and B)  $\beta$ -CD at atmosphere.



Figure S13. The H<sub>2</sub> adsorption of UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red) at A) 77 K and B) 87 K.



**Figure S14.** The H<sub>2</sub> Qst of UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red). The Qst are 7.8 kJ mol<sup>-1</sup>and 7.4 kJ mol<sup>-1</sup> respectively.



Figure S15. The CH<sub>4</sub> adsorption of UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red) at A) 77 K and B) 87 K.



**Figure S16.** The CH<sub>4</sub> Qst of UiO-68-azo (black) and  $\beta$ -CD@UiO-68-azo (red). The Qst are 13.4 kJ mol<sup>-1</sup>and 13.0 kJ mol<sup>-1</sup> respectively.



**Figure S17.** The XRD patterns of UiO-68-azo membrane (black) and  $\beta$ -CD@UiO-68-azo membrane after 3 cycle of desorption/adsorption of  $\beta$ -CD (red).

|          |                 | UiO-68-azo membrane |                    | UiO-68-azo      | membrane           | after U            | JV              |  |
|----------|-----------------|---------------------|--------------------|-----------------|--------------------|--------------------|-----------------|--|
|          |                 |                     |                    | irradiation     |                    |                    |                 |  |
| Membrane | KC <sup>a</sup> | P (i) <sup>b</sup>  | Р (j) <sup>ь</sup> | SF <sup>c</sup> | P (i) <sup>b</sup> | P (j) <sup>b</sup> | SF <sup>c</sup> |  |
| 1        |                 | 131520              | 13152              | 14.9            | 121702             | 9447               | 17.9            |  |
| 2        |                 | 132076              | 12596              | 15.4            | 121702             | 9261               | 18.0            |  |
| 3        | 4.7             | 145783              | 18523              | 13.5            | 144301             | 17968              | 14.6            |  |
| 4        |                 | 130038              | 12967              | 16.5            | 121331             | 9076               | 18.6            |  |
| 5        |                 | 143560              | 16671              | 16.1            | 142449             | 16486              | 17.2            |  |

**Table S1.**  $H_2/CO_2$  mixture gas separation performances of the UiO-68-azo membrane before and after UV irradiation at 1 bar and room temperature with 1:1 binary mixture.

<sup>a.</sup> Knudsen constant. <sup>b.</sup> Permeability in Barrer. <sup>c.</sup> Separation factor.

**Table S2.** Mixture gas separation performances of the UiO-68-azo membrane and  $\beta$ -CD@UiO-68-azo membrane at 1 bar and room temperature with 1:1 binary mixture. (Membrane 1)

|                                 |                 | UiO-68-az          | UiO-68-azo membrane |      | β-CD@UiO-68-azo membrane |                    |                 |
|---------------------------------|-----------------|--------------------|---------------------|------|--------------------------|--------------------|-----------------|
| Gas <sub>i/j</sub>              | KC <sup>a</sup> | P (i) <sup>b</sup> | Р (j) <sup>ь</sup>  | SFc  | P (i) <sup>b</sup>       | Р (j) <sup>ь</sup> | SF <sup>c</sup> |
| H <sub>2</sub> /CO <sub>2</sub> | 4.7             | 130779             | 12781               | 15.0 | 107253                   | 2778               | 46.6            |
| $H_2/N_2$                       | 3.7             | 116145             | 14819               | 10.8 | 103919                   | 5186               | 23.9            |
| $H_2/CH_4$                      | 2.8             | 107253             | 23154               | 9.7  | 110958                   | 9632               | 13.1            |

<sup>a.</sup> Knudsen constant. <sup>b.</sup> Permeability in Barrer. <sup>c.</sup> Separation factor.

**Table S3.** Mixture gas separation performances of the UiO-68-azo membrane and  $\beta$ -CD@UiO-68-azo membrane at 1 bar and room temperature with 1:1 binary mixture. (Membrane 2)

|                                 |                 | UiO-68-az          | UiO-68-azo membrane |                 |                    | β-CD@UiO-68-azo membrane |                 |  |
|---------------------------------|-----------------|--------------------|---------------------|-----------------|--------------------|--------------------------|-----------------|--|
| Gas <sub>i/j</sub>              | KC <sup>a</sup> | P (i) <sup>b</sup> | Р (j) <sup>ь</sup>  | SF <sup>c</sup> | P (i) <sup>b</sup> | P (j) <sup>b</sup>       | SF <sup>c</sup> |  |
| H <sub>2</sub> /CO <sub>2</sub> | 4.7             | 130038             | 12781               | 16.5            | 107809             | 2558                     | 48.9            |  |
| $H_2/N_2$                       | 3.7             | 119479             | 17227               | 9.3             | 102993             | 4797                     | 21.9            |  |
| $H_2/CH_4$                      | 2.8             | 130223             | 22414               | 7.8             | 110958             | 8314                     | 12.9            |  |

<sup>a.</sup> Knudsen constant. <sup>b.</sup> Permeability in Barrer. <sup>c.</sup> Separation factor.

**Table S4.**  $H_2/CO_2$  Mixture gas separation performances of  $\beta$ -CD@UiO-68-azo membrane at 1 bar and different temperature (from 303 K to 323 K) with 1:1 binary mixture.

|                  | _               | β-CD@UiO-68-azo membrane |                    |                 |  |
|------------------|-----------------|--------------------------|--------------------|-----------------|--|
| Temperature / °C | KC <sup>a</sup> | P (i) <sup>b</sup>       | Р (j) <sup>ь</sup> | SF <sup>c</sup> |  |
| 30               |                 | 102596                   | 2957               | 44.8            |  |
| 40               | 4.7             | 108388                   | 3455               | 41.1            |  |
| 50               |                 | 118592                   | 4964               | 32.5            |  |

<sup>a.</sup> Knudsen constant. <sup>b.</sup> Permeability in Barrer. <sup>c.</sup> Separation factor.

|                | _               | β-CD@UiO-68-azo membrane |                    |                 |  |
|----------------|-----------------|--------------------------|--------------------|-----------------|--|
| Pressure / bar | KC <sup>a</sup> | P (i) <sup>b</sup>       | P (j) <sup>b</sup> | SF <sup>c</sup> |  |
| 1              |                 | 99237                    | 2686               | 47.3            |  |
| 1.1            | 4.7             | 97865                    | 2864               | 42.4            |  |
| 1.4            |                 | 80132                    | 4931               | 20.3            |  |

**Table S5.**  $H_2/CO_2$  Mixture gas separation performances of  $\beta$ -CD@UiO-68-azo membrane at room temperature and different pressure (feed gas pressure from 1bar to 1.4bar) with 1:1 binary mixture.

<sup>a.</sup> Knudsen constant. <sup>b.</sup> Permeability in Barrer. <sup>c.</sup> Separation factor.