Selective CO₂-to-formate electrochemical conversion with core-shell structured Cu₂O/Cu@C composites immobilized on nitrogen-doped graphene sheets

Da Li,^{ab} Tongtong Liu,^b Linlin Huang,^b Jing Wu,^b Jiannan Li,^b Liang Zhen,^{*a,c,d} and Yujie Feng^{b*}

^a School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shen Zhen

518055, China

^b State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology,

Harbin 150090, China

- ^c MOE Key Laboratory of Micro-Systems and Micro-Structure Manufacturing, Harbin Institute of
- Technology, Harbin 150080, China

^d School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

*Corresponding Author: <u>lzhen@hit.edu.cn</u> (*L. Zhen*), yujief@hit.edu.cn (*Y. -J. Feng*)

FigureS1TEMN-dopedreducedgrapheneoxide.

Figure S2 SEM image of Cu_btc particles (a), SEM (b) and TEM images (c) after Cu_btc carbonization, insertion presented the size distribution of metallic nanoparticle.

Figure S3 SEM image of Cu_btc/rGO composites (a), SEM (b) and TEM images (c) after Cu_btc/rGO

carbonization, insertion presented the size distribution of metallic nanoparticle.

Figure S4 Cu LMM Auger spectra of $Cu_2O/Cu@C$, $Cu_2O/Cu@C/rGO$, and $Cu_2O/Cu@C/NG$.

Figure S5 Higher resolution of XPS N 1s of $Cu_2O/Cu@C$ (a) and $Cu_2O/Cu@C/rGO$ (b).

Figure S6 LSV curves for NG, $Cu_2O/Cu@C$, and $Cu_2O/Cu@C/rGO$ in N₂- and CO₂-saturated 0.1 M

KHCO₃ electrolyte.

Figure S7 Faradaic efficiency for hydrogen and ethanol of $Cu_2O/Cu@C$, $Cu_2O/Cu@C/rGO$, and

Cu₂O/Cu@C/NG.

Figure S9 Partial current density of formate for $Cu_2O/Cu@C$, $Cu_2O/Cu@C/rGO$, and $Cu_2O/Cu@C/NG$.

Figure S10 Cyclic voltammagrams at scan rate range from 10 to 100 mV s⁻¹ for Cu₂O/Cu@C (a), $Cu_2O/Cu@C/rGO$ (b), and $Cu_2O/Cu@C/NG$ (c), respectively.

Figure S11 The linear fitting between Cu-N-Cu content and partial current density of formateobtainedby $Cu_2O/Cu@C$, $Cu_2O/Cu@C/rGO$ and $Cu_2O/Cu@C/NG$.

Catalysts	Cu	С	Ν	0
Cu ₂ O/Cu@C	0.87	90.37	0.74	8.02
Cu ₂ O/Cu@C/rGO	0.37	93.26	1.26	5.11
Cu₂O/Cu@C/NG	0.31	88.14	3.97	7.58

Table S1 Atomic concentration (%) of Cu₂O/Cu@C, Cu₂O/Cu@C/rGO, and Cu₂O/Cu@C/NG

Catalysts	pyridinic	pyrrolic	Cu-N-Cu	graphite	quaternar y	oxidized
Cu₂O/Cu@C	0.13	0.13	0.11	0.15	0.14	0.076
Cu ₂ O/Cu@C/rGO	0.30	0.12	0.20	0.18	0.30	0.16
Cu₂O/Cu@C/NG	0.67	0.46	0.65	0.57	1.12	0.50

Table S2 Atomic concentration (%) of N species in Cu₂O/Cu@C, Cu₂O/Cu@C/rGO, and

Cu ₂ O/Cu@	C/NG
-----------------------	------

Catalysts	R ohm	R _{ct}
Cu ₂ O/Cu@C	4.25	9.91
Cu ₂ O/Cu@C/rGO	4.77	7.64
Cu ₂ O/Cu@C/NG	4.79	3.91

Table S3 Internal resistance of Cu₂O/Cu@C, Cu₂O/Cu@C/rGO, and Cu₂O/Cu@C/NG

Catalyst	Electrolyte	Potential for FE _{max}	Product and maximum FE	Ref.
HKUST-1 derived Cu/C	0.1M KHCO ₃	-0.3 V vs. RHE	HCOOH: ~10%	1
Cu-NU1000	0.1 M NaClO ₄	-0.82V vs. RHE	Formate: 28%	2
Cu rubeanate MOF	0.5 M KHCO ₃	-1.2 V vs. SHE	HCOOH: 30%	3
Cu ₂ O/Cu@NC-800	0.1 M KHCO ₃	–0.68 V vs. RHE	Formate: 70.5 %	4
Cu ₂ O/Cu@C/NG	0.1 M KHCO ₃	–0.78 V vs. RHE	Formate: 82.8%	This study
GN/ZnO/Cu ₂ O	0.5 M NaHCO ₃	-0.9 V vs. Ag/AgCl	n-propanol: 30%	5
SnO ₂ /rGO	0.5 M NaHCO ₃	-0.8 V vs. Ag/AgCl	Formate: 89%	6
Bi ₂ O ₃ -NGQDs	0.5 M KHCO ₃	-0.9 V vs. RHE	Formate: ~100%	7
Co/SL-NG	0.1 M NaHCO ₃	-0.90 V vs. SCE	Methanol: 71.4%	8
Zn-N-G-800	0.5 M KHCO₃	-0.5 V vs. RHE	CO: 91%	9
Cu ₂ O/NRGO	0.1 M KHCO ₃	-1.4 V vs. RHE	C ₂ H ₄ : 19.7%	10

Table S4 Performance comparison of CO₂ reduction with reported Cu-based MOF materials or metals loaded on graphene-based substrate

Potential (V)	Linear equation	R ²
-0.38	y=0.051x+0.089	0.83
-0.48	y=0.93x+0.41	0.96
-0.58	y=2.36x+1.10	0.51
-0.68	y=4.99x+1.20	0.95
-0.78	y=9.03x+2.09	0.91
-0.88	y=7.74x+2.52	0.90

Table S5 Linear fitting between atomic content of Cu-N-Cu (%) in Cu₂O/Cu@C, Cu₂O/Cu@C/rGO,

and Cu₂O/Cu@C/NG and the partial current densities

- 1 K. Zhao, Y. Liu, X. Quan, S. Chen and H. Yu, ACS Appl. Mater. Interfaces, 2017, 9, 5302-5311.
- 2 C. W. Kung, C. O. Audu, A. W. Peters, H. Noh, O. K. Farha and J. T. Hupp, *ACS Energy Letters*, 2017,
 2, 2394-2401.
- 3 R. Hinogami, S. Yotsuhashi, M. Deguchi, Y. Zenitani, H. Hashiba and Y. Yamada, *ECS Electrochem*. *Lett.*, 2012, **1**, H17-H19.
- 4 D. Li, T. Liu, Z. Yan, L. Zhen, J. Liu, J. Wu and Y. Feng, ACS Appl. Mater. Interfaces, 2020, 12, 7030-7037.
- 5 R. A. Geioushy, M. M. Khaled, K. Alhooshani, A. S. Hakeem and A. Rinaldi, *Electrochim. Acta*, 2017, 245, 456-462.
- 6 B. Zhang, Z. Guo, Z. Zuo, W. Pan and J. Zhang, *Applied Catalysis B: Environmental*, 2018, **239**, 441-449.
- 7 Z. Chen, K. Mou, X. Wang and L. Liu, Angew Chem Int Ed Engl, 2018, 57, 12790-12794.
- 8 J. Huang, X. Guo, G. Yue, Q. Hu and L. Wang, ACS Appl. Mater. Interfaces, 2018, 10, 44403-44414.
- 9 Z. Chen, K. Mou, S. Yao and L. Liu, ChemSusChem, 2018, 11, 2944-2952.
- 10 H. Ning, Q. Mao, W. Wang, Z. Yang, X. Wang, Q. Zhao, Y. Song and M. Wu, *Journal of Alloys* and Compounds, 2019, **785**, 7-12.