Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Electronic supplementary information:

Sacrificial agent-free photocatalytic H_2O_2 evolution via two-electron oxygen reduction using a ternary α -Fe₂O₃/CQD@g-C₃N₄ photocatalyst with broad-spectrum response

Xi Chen ^{a, b}, Wenwen Zhang^b, Lixiang Zhang^{c, b}, Luping Feng ^{a, b}, Chunxian Zhang^b, Jie Jiang^d, Tingjiang Yan^b, Hua Wang ^{a, b, d*}

^a School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China.

^b Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, P. R. China.

^c School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, P. R. China.

^d School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, P. R. China.

*Corresponding Author: E-mail addresses: huawang@qfnu.edu.cn; Tel: +86 537 4456306; Web: http://wang.qfnu.edu.cn.

Experimental Section

Synthesis of carbon quantum dots (CQDs). The CQDs were prepared from the decomposition of isopropanol via a solvothermal method. Typically, 16.4 mL IPA was added into 13.6 mL DMF. The mixture was then autoclaved in a 70 mL Teflon container at 180°C for 8 h. After cooling to room temperature, the CQDs solution was obtained in the end.

Synthesis of α -Fe₂O₃@g-C₃N₄. Typically, an aliquot of 0.10 g of ultrathin g-C₃N₄ and 13.6 mL of α -Fe₂O₃ precursor solution above was introduced into 16.4 mL DMF under vigorous stirring. After the ultrasonic dispersion for 30 min, the mixture was transferred into a 70 mL Teflon-lined autoclave, and heated at 180°C for 8 h. Afterwards, the α -Fe₂O₃@g-C₃N₄ was collected by centrifugation and washed for three times with ethanol, followed by being dried at 60°C overnight.

Characterization of Photocatalytic Materials

X-ray diffraction (XRD) measurements were performed using a powder diffractometer (Rjgaku/MiniFlex600) in the 2θ range of 10° - 80° with a Cu K α radiation. X-ray photoelectron spectra (XPS) were recorded by a spectrometer (ESCALAB 250Xi) using Al K α radiation with the C 1s peak (284.6 eV) as reference. The microstructures of the samples were explored by the transmission electron microscopy (TEM, JEOL/JEM-2100PLUS) with electron energy of 15 kV. The UV–vis diffuse reflection spectra (DRS) of samples were measured with the spectrophotometer (Shimadzu/UV-3600) using BaSO₄ as reference in the range of 360 - 800 nm. Electron spin resonance (ESR) tests of samples were conducted using a spectrometer (JEOL/JES-FA200) to prove the presence of $\cdot O_2^-$ in the photocatalysis reactions.

Electrochemical Tests

Rotating ring-disk electrode (RRDE) and rotating disk electrode (RDE) measurements were accomplished through an electrochemical workstation (Chenhua CHI 760E) with a four-electrode system (Pine/AFMSRCE). The working electrode was prepared as follows: 5 mg of the product was dispersed into 1 mL of mixed solution containing 475 μ L ethanol, 475 μ L water, and 50 μ L Nafion. Subsequently, 10 μ L of this suspension was dropped on a glassy carbon electrode, followed by air drying at 80 °C. The ring-disk electrode was included a glassy carbon disk

 (0.2475 cm^2) and a Pt ring (0.1866 cm^2) . The Pt ring potential was sustained at 1.48 V (*vs.* RHE). The Ag/AgCl electrode and Pt wire electrode were respectively employed as the reference electrode and counter electrode. The linear sweep voltammetry (LSV) curves were acquired in an O₂-saturated 0.10 M PBS solution after N₂ and O₂ bubbling for 30 min (pH 7.0). Besides, the electrochemical workstation was also conducted for the Mott-Schottky curves, electrochemical impedance spectroscopy, and transient photocurrent responses of different samples using conventional three-electrode system. Herein, the working electrode was fabricated by dip-coating a 5.0 µL of sample slurry (5 mg/mL aqueous Nafion) on glassy carbon electrode (3 mm²) and dried at room temperature.

Fig. S1. HRTEM images of (A) ultrathin $g-C_3N_4$ with (B) different amplified parts.

Fig. S2. TEM images of α -Fe₂O₃/CQD@g-C₃N₄ of (A) full, with (B-D) different magnificationamplified parts.

Fig. S3. (A) The stability test results of α -Fe₂O₃/CQD@g-C₃N₄ for five runs in O₂-equilibrated water; (B) XRD patterns of α -Fe₂O₃/CQD@g-C₃N₄ before and after five runs.

Fig. S4. The results of α -Fe₂O₃/CQD@g-C₃N₄-photocatalyzed O₂ evolution under visible light irradiation using 1.0 mM of AgNO₃ as the photoelectron quencher. The experiments were carried out in a Labsolar-6A photocatalytic system under vacuum condition with the reaction solutions (pH 7.0) containing 30 mL H₂O and 30 mg photocatalyst.

Fig. S5. DMPO- \cdot O₂⁻ spin-trapping ESR spectra of α -Fe₂O₃/CQD@g-C₃N₄ and CQD@g-C₃N₄ in the photo-degradation of methanol before and after 5 min visible light illumination.

Fig. S6. DMPO- \cdot OH spin-trapping ESR spectra of CQD@g-C₃N₄ and α -Fe₂O₃/CQD@g-C₃N₄ in water before and after 10 min illumination.

Fig. S7. The calibration curve of fluorescence intensities versus different H_2O_2 concentrations.

Table S1. Element content analysis of α -Fe₂O₃/CQD@g-C₃N₄ composite from XPS spectra

(Atomic %)								
Sample	C/%	N/%	Fe/%	O/%				
$\alpha\text{-}Fe_2O_3/CQD/g\text{-}C_3N_4$	50.18	40.24	2.82	6.76				

Table S2. Energy band gaps, conduction band potentials, and valence band potentials of ultrathin

Samples	Eg/eV	E _{CB} /eV	E_{VB}/eV			
ultrathin g-C ₃ N ₄	2.81	-1.13	1.68			
(110) exposed α -Fe ₂ O ₃	2.17	0.26	2.43			

g-C₃N₄ and (110) exposed α -Fe₂O₃.

Photocatalyst	Cocatalyst	Sacrificial agent	Gas atmosphere (air)	Materials input (mg)	H ₂ O ₂ yield rate (μmol·g ⁻¹ ·h ⁻¹)	Ref.
g-C ₃ N ₄ /PWO	/	/	/	100	29	[1]
Cv/g-C ₃ N ₄	/	/	/	100	ca. 92	[2]
g-C ₃ N ₄ /CoWO	/	/	/	100	187	[3]
Cu ₂ (OH)PO ₄ /g-C ₃ N ₄	/	/	saturated O ₂	200	400	[4]
mesoporous g-C ₃ N ₄	/	C ₂ H ₆ O	saturated O ₂	20	ca. 187.5	[5]
SN-GQD/TiO ₂	/	C ₃ H ₈ O	saturated O ₂	25	110.4	[6]
rGO/Cd ₃ (TMT) ₂	/	CH ₃ OH	/	80	95	[7]
g-C ₃ N ₄ /CNTs	/	НСООН	/	100	326	[8]
APTMS/TiO ₂	Pd	phosphate	/	5	300	[9]
TiO ₂	Au/Ag	C ₂ H ₆ O	saturated O ₂	5	150	[10]
α-Fe ₂ O ₃ /CQD@g-C ₃ N ₄	/	/	saturated O ₂	5	138.6	This work

Table S3. Comparison of photocatalytic performances for H_2O_2 production among different photocatalysts.

References

[1] S. Zhao and X. Zhao, Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light, *J. Catal.*, 2018, 366, 98-106.
[2] S. Li, *et al.* Effective photocatalytic H₂O₂ production under visible light irradiation at g-C₃N₄ modulated by

carbon vacancies, Appl. Catal. B-Environ., 2016, 190, 26-35.

[3] S. Zhao and X. Zhao, Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework, *Appl. Catal. B-Environ.*, 2019, **250**, 408-418.

[4] X. Wang, Z. Han, L. Yu, C. Liu, Y. Liu and G. Wu, Synthesis of full-spectrum-response $Cu_2(OH)PO_4/g$ - C_3N_4 photocatalyst with outstanding photocatalytic H_2O_2 production performance via a "Two Channel Route", *ACS Sustain. Chem. Eng.*, 2018, **6**, 14542-14553. [5] Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa and T. Hirai, Effects of surface defects on photocatalytic H_2O_2 production by mesoporous graphitic carbon nitride under visible light irradiation, *ACS Catal.*, 2015, **5**, 3058-3066.

[6] L. Zheng, *et al.* Highly selective photocatalytic production of H₂O₂ on sulfur and nitrogen co-doped graphene quantum dots tuned TiO₂, *Appl. Catal. B-Environ.*, 2018, **239**, 475-484.

[7] J. Xu, *et al.* $Cd_3(C_3N_3S_3)_2$ coordination polymer/graphene nanoarchitectures for enhanced photocatalytic H_2O_2 production under visible light, *Sci. Bull.*, 2017, **62**, 610-618.

[8] S. Zhao, T. Guo, X. Li, T. Xue, B. Yang and X. Zhao, Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light, *Appl. Catal. B-Environ.*, 2018, **224**, 725-732.

[9] C. Chu, *et al.* Electronic tuning of metal nanoparticles for highly efficient photocatalytic hydrogen peroxide production, *ACS Catal.*, 2019, **9**, 626-631.

[10] D. Tsukamoto, *et al.* Photocatalytic H₂O₂ production from ethanol/O₂ system using TiO₂ loaded with Au-Ag bimetallic alloy nanoparticles, *ACS Catal.*, 2012, **2**, 599-603.