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Experimental Section

Synthesis of carbon quantum dots (CQDs). The CQDs were prepared from the 

decomposition of isopropanol via a solvothermal method. Typically, 16.4 mL IPA was added into 

13.6 mL DMF. The mixture was then autoclaved in a 70 mL Teflon container at 180°C for 8 h. 

After cooling to room temperature, the CQDs solution was obtained in the end.

Synthesis of α-Fe2O3@g-C3N4. Typically, an aliquot of 0.10 g of ultrathin g-C3N4 and 13.6 

mL of α-Fe2O3 precursor solution above was introduced into 16.4 mL DMF under vigorous 

stirring. After the ultrasonic dispersion for 30 min, the mixture was transferred into a 70 mL 

Teflon-lined autoclave, and heated at 180°C for 8 h. Afterwards, the α-Fe2O3@g-C3N4 was 

collected by centrifugation and washed for three times with ethanol, followed by being dried at 

60°C overnight.

Characterization of Photocatalytic Materials

X-ray diffraction (XRD) measurements were performed using a powder diffractometer 

(Rjgaku/MiniFlex600) in the 2θ range of 10° - 80° with a Cu Kα radiation. X-ray photoelectron 

spectra (XPS) were recorded by a spectrometer (ESCALAB 250Xi) using Al Kα radiation with 

the C 1s peak (284.6 eV) as reference. The microstructures of the samples were explored by the 

transmission electron microscopy (TEM, JEOL/JEM-2100PLUS) with electron energy of 15 kV. 

The UV–vis diffuse reflection spectra (DRS) of samples were measured with the 

spectrophotometer (Shimadzu/UV-3600) using BaSO4 as reference in the range of 360 - 800 nm. 

Electron spin resonance (ESR) tests of samples were conducted using a spectrometer (JEOL/JES-

FA200) to prove the presence of ·O2
- in the photocatalysis reactions.

Electrochemical Tests

Rotating ring-disk electrode (RRDE) and rotating disk electrode (RDE) measurements were 

accomplished through an electrochemical workstation (Chenhua CHI 760E) with a four-electrode 

system (Pine/AFMSRCE). The working electrode was prepared as follows: 5 mg of the product 

was dispersed into 1 mL of mixed solution containing 475 μL ethanol, 475 μL water, and 50 μL 

Nafion. Subsequently, 10 μL of this suspension was dropped on a glassy carbon electrode, 

followed by air drying at 80 °C. The ring-disk electrode was included a glassy carbon disk 



(0.2475 cm2) and a Pt ring (0.1866 cm2). The Pt ring potential was sustained at 1.48 V (vs. RHE). 

The Ag/AgCl electrode and Pt wire electrode were respectively employed as the reference 

electrode and counter electrode. The linear sweep voltammetry (LSV) curves were acquired in an 

O2-saturated 0.10 M PBS solution after N2 and O2 bubbling for 30 min (pH 7.0). Besides, the 

electrochemical workstation was also conducted for the Mott-Schottky curves, electrochemical 

impedance spectroscopy, and transient photocurrent responses of different samples using 

conventional three-electrode system. Herein, the working electrode was fabricated by dip-coating 

a 5.0 μL of sample slurry (5 mg/mL aqueous Nafion) on glassy carbon electrode (3 mm2) and 

dried at room temperature.



Fig. S1. HRTEM images of (A) ultrathin g-C3N4 with (B) different amplified parts.
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Fig. S2. TEM images of α-Fe2O3/CQD@g-C3N4 of (A) full, with (B-D) different magnification-

amplified parts.
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Fig. S3. (A) The stability test results of α-Fe2O3/CQD@g-C3N4 for five runs in O2-equilibrated 

water; (B) XRD patterns of α-Fe2O3/CQD@g-C3N4 before and after five runs.
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Fig. S4. The results of α-Fe2O3/CQD@g-C3N4-photocatalyzed O2 evolution under visible light 

irradiation using 1.0 mM of AgNO3 as the photoelectron quencher. The experiments were carried 

out in a Labsolar-6A photocatalytic system under vacuum condition with the reaction solutions 

(pH 7.0) containing 30 mL H2O and 30 mg photocatalyst.
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Fig. S5. DMPO-·O2
- spin-trapping ESR spectra of α-Fe2O3/CQD@g-C3N4 and CQD@g-C3N4 in 

the photo-degradation of methanol before and after 5 min visible light illumination.
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Fig. S6. DMPO-·OH spin-trapping ESR spectra of CQD@g-C3N4 and α-Fe2O3/CQD@g-C3N4 in 

water before and after 10 min illumination.
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Fig. S7. The calibration curve of fluorescence intensities versus different H2O2 concentrations.
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Table S1. Element content analysis of α-Fe2O3/CQD@g-C3N4 composite from XPS spectra 

(Atomic %)

Sample C/% N/% Fe/% O/%

α-Fe2O3/CQD/g-C3N4 50.18 40.24 2.82 6.76

Table S2. Energy band gaps, conduction band potentials, and valence band potentials of ultrathin 

g-C3N4 and (110) exposed α-Fe2O3.

Samples Eg/eV ECB/eV EVB/eV

ultrathin g-C3N4   2.81 -1.13 1.68

(110) exposed α-Fe2O3 2.17 0.26 2.43



Table S3. Comparison of photocatalytic performances for H2O2 production among different 

photocatalysts.

Photocatalyst Cocatalyst
Sacrificial

 agent

Gas atmosphere 

(air)

Materials 

input

(mg)

H2O2 yield rate

(μmol·g-1·h-1)
Ref.

g-C3N4/PWO / / / 100 29 [1]

Cv/g-C3N4 / / / 100 ca. 92 [2]

 g-C3N4/CoWO / / / 100 187 [3]

Cu2(OH)PO4/g-C3N4 / / saturated O2 200 400 [4]

mesoporous g-C3N4 / C2H6O saturated O2 20 ca. 187.5 [5]

 SN-GQD/TiO2 / C3H8O saturated O2 25 110.4 [6]

rGO/Cd3(TMT)2 / CH3OH / 80 95 [7]

g-C3N4/CNTs / HCOOH / 100 326 [8]

APTMS/TiO2 Pd phosphate / 5 300 [9]

TiO2 Au/Ag C2H6O saturated O2 5 150 [10]

α-Fe2O3/CQD@g-C3N4 / / saturated O2 5 138.6 This work
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