Supplementary Information

High lithium storage properties in manganese sulfide anode via an

intercalation-cum-conversion reaction

Seulgi Lee,[‡] Moonsu Song, [‡] Sungjin Kim, Vinod Mathew, Balaji Sambandam, Jang-Yeon Hwang^{*} and Jaekook Kim^{*}

Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea

Author Information

[‡]These authors contribute equally to this work.

Corresponding Author

*E-mail: hjy@jnu.ac.kr; jaekook@chonnam.ac.kr

Fig. S1 PXRD pattern of the commercial MnS powder.

Fig. S2 SEM image of the commercial MnS powder.

Fig. S3 (a) Discharge/charge curves and (b) cycle performance of the commercial MnS electrode.

Fig. S4 PXRD pattern of the as-prepared MnS after polyol reaction.

Fig. S5 SEM image of the as-prepared MnS powder.

Fig. S6 Electrochecmical properties of the as-prepared MnS electrode including discharge/charge curves at differnt current densities, C-rate and Cycling performances.

Fig. S7 Ex situ Mn XPS spectra α -MnS@NS-C electrode at OCV and fully discharged and charged states of the initial cycle.

Fig. S8. Ex situ HRTEM images of α -MnS@NS-C after initial (a) discharged and (b)charged states.

Fig. S9. (a) Optimization of potential window for the full cell using half-cell data for the NCM811 cathode and the α -MnS@NS-C electrode; Electrochemical performance of α -MnS@NS-C/1 M LiPF₆ -EC-DMC / NCM 811 full-cell and (b) cyclability plot in the potential range of 1 – 4.3 V at 20 mA g⁻¹.