Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Destabilization of LiBH₄ by the infusion of Bi_2X_3 (X = S, Se, Te): An in-situ TEM investigation

Pratibha Pal^a, Pooja Kumari^{a,b}, Yongming Wang^c, Shigehito Isobe^c, Manoj Kumar^b, Takayuki Ichikawa^{a,d#}, and Ankur Jain^{e*}

^aGraduate school of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
^bDepartment of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan, 302017, India
^cFaculty of Engineering, Hokkaido University, Hokkaido, 739-8530, Japan
^dNatural Science Centre for Basic Research and Development, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
^eGraduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-0046, Japan

*ankur.j.ankur@gmail.com, #tichi@hiroshima-u.ac.jp

Fig S1: DTA profile of LiBH₄-50wt% Bi_2S_3 composite with heating (downwards; endo) and cooling (upwards; exo) profiles

Fig S2: TG-DTA and MS profile of 12LiBH₄- Bi₂S₃ sample

Fig S3: TEM Micrograph of $LiBH_4$ -50% Bi_2S_3 composite after milling and heating at different temperatures. EDS profile was obtained from the position shown by the start point of arrow

Fig S4: TEM Micrograph of LiBH₄-50% Bi_2Se_3 composite after milling and heating at 450°C. EDS profile was obtained from the position shown by the start point of arrow.

Fig S5: TEM Micrograph of $LiBH_4$ -50% Bi_2Te_3 composite after milling and heating at different temperatures. EDS profile was obtained from the position shown by the start point of arrow